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PREFACE

During the last few years, major scientific progress has been achieved in fields related to computer
aided analysis of multibody systems. In view of this progress and recent developments of computer hardware
and general purpose software, there is a need to access the current state of art and results from different schools
of thought, with the objective of focussing trends in future research.

Going back to 1983 when an important NATO-NSF-ARO Advanced Study Institute on ComputerAided Analysis and Optimization of Mechanical Systems was held at the University of Iowa, one may notice
that less then 10 years ago the state of art was mainly dwelling on rigid body dynamics.

The interest in the dynamic simulation of mechanical systems has steadily increased in recent years
coming mainly from the aerospace and automotive industries. The development of multibody system analysisformulations have been more recently motivated with the need to include several features such as: real-time
simulation capabilities, highly non-linear control devices, work space path planing, active control of machine
flexibilities and reliability and accuracy in thi analysis results.

The need for accurate and efficient analysis tools for design of large and lightweight mechanical 4
systen's has driven many research groups in the challenging problem of flexible sy,;tems with an increasing
interaction with finite element methodologies.

Basic approaches to mechanical systems dynamic analysis have recently been presented in several new
text books. These publications demonstrate that both recursive and absolute methods still have their proponents
to resolve the redundancy encountered in most mechanical systems.

Also, it is now widely recognized that the classical equations governing multibody systems dynamics I
must be derived and presented in a computer oriented manner using either modern symbolic manipulators for
faster and reliable code development or advanced assemblage and solution algorithms interfacing in a modular
manner with other types of software in the areas of control, finite elements and optimization. These are topics
that are addressed in a more systematic manner, using modem object oriented computer languages.This ASI brings together developers of different segments of these schools of thought as lecturers,advanced design engineers, and researchers as students, for the purpose of presentation, refinement and|
publication of a comprehensive work on different methodologies in Computer Aided Analysis of Rigid and
Flexible Mechanical Systems. jri

Related developments and applications in solution methods in the fields of numerical analysis,
software and hardware platforms are presented and analyzed in this ASI. Recent contributions to time
integration methods applicable to differential-algebraic systems and problems related to time integration offlexible systems with high frequency content are also addressed. Computer graphics and parallel computing
methodologies using emerging computer technologies are presented and analyzed as an alternative to speed up
and post-process the numerical solution of very large and complex systems.

In addition to presentation of basic formulations and methodologies in dynamics of multibody systems,
numerical analysis and computational aspects, major applications of developments to date are presented and
analyzed in this ASI. The scope of applications is extended to vehicle dynamics, aerospace technology,
robotics, machine dynamics, vibration, intermiuent motion and crashworthiness analysis.
objective to pace development and improve the dynamic performance of mechanical systems avoiding different

mechanical limitations on the deflections and dificult functional requirements such as for example, accuracy in
robots. The applicational aspects of this ASI will help the participants to apprize the different approaches
available today and their use and suitability as efficient design tools for different classes of problems and
practical applications.

This ASI in the field of Computer Aided Analysis of Rigid and Flexible Mechanical Systems is quitetimely and it is expected that through the interchange of ideas between leading scientists and scholars, welldefined directions of research and developments will emerge as well as an increase in international
collaboration and new industrial applications developments.

I deeply appreciate all help and cooperation in organizing the Institute given by Prof. Jorge A.C.
Ambr6sio. I am gratefull to all members of the organizing committee and to Prof. C. A. Mota Soares, for their
support and advice. Special thanks to CEMUL staff, Ms. Gl6ria Ramos, Ms. Alexandra Andrade, and Mr.Am.ndio Rebelo for their effort and constant support of the Institute

Tr6ia, June 1993 
- £

Manuel Seabra Pereira
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ON TWIST AND WRENCH GENERATORS AND ANNIHILATORS

JoRGE ANGELES
Department of Mechanical Engineering
McGill Research Centre for Intelligent Machines
McGill University
817 Sherbrooke St. W.
Montreal, Quebec, CANADA
HSA 2K6
angelesamcrcim.mcgill.ca

ABSTRACT. The concepts of twist generator, wrench generator and their counterparts, ,
namely, twist annihilator and wrench annihilator are introduced in this paper. It is shown
that twist anniilators allow the elimination of idle variables in the analysis of kinematic
chains with multiple loops, thereby easing the formulation of the underlying kinematic
relations. As examples of applications, the input-output velocity analysis of a four-bar
spatial linkage and the Jacobians of a robotic mechanical system, pertaining either to a
walking machine or a multi-fingered hand, are included.

1 Introduction

The relations among the joint rates of simple kinematic chains, i.e., chains with links coupled
to two other links at most, have been fully researched for some time. Pioneer work in this ,; d
regard was reported by Freudenstein (1962), who introduced the closur' equations of a
single-loop spatial kinematic chain as a linear combination of the screws asociated with
the axes of the kinematic pairs involved, the corresponding coefficients being the joint

rates. Hence, the underlying differential relations can be written in the form of a matrix
that Freudenstein called the functional matriz of the chain. This matrix is fonnlly identical
to the Jacobian matrix of robotic manipulators with open kinematic-chain structure of the
simple type.

Current developments in robotic technology have prompted the study of multi-loop,multi-degree-of-freedom kinematic chains. Such kinematic chains appear in robotic sys-

terns ike parallel manipulators, walking machines and multi-fingered hands. The difference
between kinematic chains with multiple loops and open kinematic chains with a simple
structure, e.g., those occurring in serial manipulators, is the presence of a number of idle

joints in the former. The feed-forward control of the associated robotic mechanical systems
requires an explicit relation between the actuated joint rates and the Cartesian velocities
of the system. This relation is known to be linear, the coefficient matices involved being
generically termed Jacobians. While in serial manipulators one single Jacobian appears,

the presence of multiple loops brings about two globalJacobians, one multiplying the vector
of joint rates, the other the twist of the controlled link. Here, a distinction should be made
between what we understand as a global and a local Jacobian. The former refers to one per-ii Ii
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taainig to the overall kinematic chain, while the latter to a particular subchain of the given
chain. In simple kinematic chains this distinction is immaterial, but in multi-loop chains
it is essential. Whle the derivation of the Jacobian of robots with serial kinematic-chain
structure is a well-established subject, that uf the Jacobians involved in multi-loop systems
is still a research subiect.

Here, we resort to the concept of screw, alrea~ly discussed by Ball (18 ', to derive the
desired relations. The approach to the analysis of kinematic chains usu..y encountered
in the literature involves the calculation of recipncal screws. Any screw multiplied by an
amplitude with units of angular velocity yields-4 twist. If the screw is multiplied by an
amplitude with units of force, a wrench is obtained. If a given screw produces a wrench
on a body moving with a twist produced by a second screw and the first wrench develops
zero power onto the body under the aforementioned twist, the two screws are said to be
reciprocal. A study on the duality between wrenches and twists in the context of reciprocal
screws and its impact in the analysis of serial and parallel robotic manipulators was recently
reported (Samuel, McAree and Hunt, 1991; Waldron and Hunt, 1991). Here, we show that,
resorting to the concept of twist annihilator, not only one, but rather a set of linearly
independent reciprocal screws can be readily derived. I

Applications of the concepts introduced here are anticipated in the area of hybrid or
kinetostatic (open-loop) control of manipulators. In this regard, our work can complement
that reported by Lipkin and Duffy (1985, 1988).

2 Background on Screws of Lower Kinematic Pairs

We focus here on the screws associated with lower kinematic pairs, i.e., pairs coupling rigid
links via surface contact, as opposed to coupling via point or line contact, which occurs
under higher kinematic pairs (Hartenberg and Denavit, 1964; Angeles, 1982). The six lower

kinematic pairs a-e the revolute pair (R), the prismatic pair (P), the screw pair (R), the
cylindrical pair (C), the spherical pair (S) and the planar pair (E), a description of which
can be found in the above references.

We start by recalling the Plicker coordinates of a line C, defined as an array of six real
numbers, namely, the three components of " unit vector e, parallel to £, and tle three
components of its moment about a predefined point 0 that can lIe inside or outside the
line. If P is a point of L, and p is the vector directed from 0 to P, then the moment n of
the line is defined as

n =p e (1)

Moreover, the PI.cker array of the line is defined here as a six-dimensional array rr, aamely,

7Q (2)

Note that the six entries of the Plucker array are not independent, for they must obey two, conditions, namely,

e.e=l, and e-n=' (3)

Thus, the PlUcker array of a line contains only four independent components, but these
are enough to define the line. Now, if a pitch p is added as a fifth feature to the line or,

2I F- $
2 A ,x'-1



correspondingly, to its PlUcker array, we obtain a screw s, namely,

~ (4)

An amplitude is any scalar A multiplying the foregoing screw. It produces a twist or a

wrench depending on its units. The twist or the wrench thus derived can be said to be
in canonical form, for its representation involves explicitly the eight parameters defining
it, i.amely, the amplitude, the pitch and the six PlUcker coordinates of the associated line.
Clearly, a twist or a wrench are defined-completely by six independent eal numbers. More
generally, a twist can be regarded as a 6-dimensional array defining completely the velocity
field of a rigid body and comprises the three components of the angular velocity and the
three components of the velocity of any of the points of the body. The wrench can be
regarded likewise, namely, as the 6-dimensional array defining completely the resultant of
a system of forces and moments acting on a body. Once the twist is defined so that its first
three components are those of angular velocity, the wrench should be defined with its first
three components being those of the resultant moment involved. If we denote by w and v
the angular velocity and the velocity of a point P of the body, while letting n and f denote
the moment and the force acting on the body, the latter applied at point P, then the twist
t and the wrench w are defined as

Note that the wrench has been defined so that the inner product tTw will produce power.

3 The Twist- and Wrench-Transfer Formulas

The twist-transfer formula, which relates the twist of the same rigid body at two different
points is now derived. Here, we will need the cross-product matrix of a 3-dimensional vector
v, which is a. 3 x 3 matrix V. For any 3-dimensional vector x, V is defined as

V= (V x) (6)ax

which can be readily proven to be skew-symmetric. Indeed, from the above definition, the
cross product v x x can be alternatively written as

t X X = TX

Moreover, the product Vx vanishes whenever x is a multiple of v, and hence, V is singular.~Moreover, from the above relation,
xTVX = 0

for arbitrary x. Now, the foregoing product can only vanish if V i) is a proper orthogonal
matrix rotating vectors through 900 about any axis, or if ii) V is a multiple of the afore-
mentioned orthogonal matrix, or if iii) V is skew-symmetric. However, V being singular,
the first two possibilities are ruled out, and hence, V is skew-symmetric, q. e. d.

3l
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Now, let A and P be two arbitrary points of a rigid body. The twist of the body at
these points is defined as

tA =V ' vp (7)
where vp can be rewritten as

vP = VA + (a- p) (8)
with a and p defined as the position vectors of points A and P, respectively. Combining
eq.(7) with eq.(8) yields

tp = TtA (9)
with the 6 x 6 matrix T defined as

" T-[A-P 0] (10)

in which the 3 x 3 matrices A and P are the cross-product matrices of vectors a and p,
respectively. Moreover, 1 and 0 denote the 3 x 3 identity and zero matrices.

Likewise, the urench.traunferformula relates the wrench at two points on the same rigid
body. We. define the wrench at these points as

W A  -- I w p ---- ( 1 1 )

where np, the moment of the wrench about point P, is related to that about A, WA, by

np = nA + (a- p) X f (12)

and hence, wp takes on the form
WP = UWA (13)

where U is the 6 x 6 matrix defined below:
*S 11 A-P

i (14)

and A and P were defined in eq.(9). Thus, wp is a linear transformation of WA.
Multiplying the transpose of each side of eq.(9) by the corresponding side of eq.(13)

yields
t wp - tTTTUwA (15)

Upon expa nion of the matrix product appearing in eq.(15), we obtain

STTU=[ -A+P][1 A;.P]--x. (16)

with 1 6x6 denoting the 6 x 6 identity matrix. Hence, twp = tAWA, as expected, since
the wrench develops the same amount of power, regardless of where the force is assumed to
be applied. Also note that an interesting relation betweer T and U follows from eq.(16),
namely,

U - 1 = T (17)

It is apparent that both det(T) and det(U) are equal to unity. Thus, the twist and
the wrench at two different points of a rigid body are related by a linear transformation
represented by a 6 x 6 matrix of the unimodular group, i.e., the group of 6 x 6 matrices of
determinant equal to unity.

.

4 A
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4 The Twist Generators of the Lower Kinematic Pairs

1 We define below the twist generators of the six lower kinematic pairs:

4..1 THE REVOLUTL.'!

A revolute coupling of two rigid links, 1 and 2, appea'.rs in Fig. 1, which shows its attributes,

I namely, a line £ passing through point 0 and parallel to the unit vector e. The screw of the
revolute. denoted by the 6-dimensional array sR, is derived from the general expression for
the screw given in eq.(4) with a pitch p = 0. Moreover, we let p denote the vector directed
from point 0 of C to point P of body 2. The screw SR, then, takes on the form

11. SR [ex (18)
Note that the foregoing array is identical to the Plucker array of L when written with aJ moment about point P. In this case, since any motion of 2 with respect to 1 reduces to a
rotation about £ with point 0 of 2 coincident with point O of 1, the twist of 2 with respect

if to 1 can be simply expressed as esR, and hence, SR is the twist generator of this pair.

* L.

' 'i

Figure 1: The revolute pair

e10

5I

4.2 THE PRISMATIC PAIR '4A prismatic pair coupling bodies l and 2 is shown in Fig. 2, its sole attribute being the .
direction of the unit vector e. Here, no line can be defined, as in the case of the revolute,
the associated screw, .p, being given as i

i -



Thus. any motion of 2 relative to 1 reduces to a translation along the direction of e, the
associated twist thus reducing to "p. The twist generator of the prismatic pair is, then,
sp.

: U

1 2

FOI

i Figure 2: The prismatic pair

4.3 THE SCREW PAIR t

Shown in Fig. 3 is a screw pair coupling bodies 1 and 2, its attributes being a line £ and a "
pitch p. Moreover, the line is defined by its direction parallel to the unit vector e and its
moment about point P of body 2. The derivation of the associated screw, sH, from eq.(4),

4 is straightforward, namely, r e l

" =  (20)
Lex +peJ

i Thus, any motion of 2 with respect to 1 reduces to a rotation about and a translation along p
line L, the associated twist thus becoming isH. The twist generator of the screw pair is
thus SH-

4.4 THE CYLINDRICAL PAIR
A cylindrical pair coupling bodies 1 and 2 appears in Fig. 4, which shows the attributes of the

associated screw, namely, the line £ and its two-dof capability, namely, a translation along
and a rotation about L, each independent from the other. Thus, the relative motion allowed
by this pair has two degrees of freedom, the associated motion then being a combination
of the motions allowed by a revolute and a prismatic pair, the latter having a direction
parallel to that of the axis of the revolute. While in the first three cases the twist generator I
coincided with the screw associated with the pair at hand, and, hence, the twist generatorreduced to a 6-dimensional array, in this cae we need a 6 x 2 array, in light of the degree of

freedom involved. In fact, the twist of any motion of 2 with respect to 1 can be expressed -. -

-3-
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e16=P6

Figure 3: The screw pair

as a linear combination of the screws of the revolute and the prismatic pair, i.e.,

lexp] "0

which can be recast in the form

[re e Pr0]Xe: t =lexp .Jb

and hence, the twist generator sought is the 6 x 2 coefficient matrix Sc multiplying the
two-dimensional vector of motion variables [, b]T in the above expression, i.e.,

SC e (21)

where 0 is the 3-dimensional zero vector.

4.5 THE SPHERICAL PAIR

Shown in Fig. 5 is a spherica) pair coupling two bodies, 1 and 2, its sole attribute being
point 0 common to the two bodies. Thus, any relative motion of 2 with respect to I
maintains point 0 of 2 fixed to point 0 of 1, the motion thus being spherical. A spherical
kinematic pair can be regarded as the combination of three revolutes in series, with axes
intersecting at point 0. Let these axee be parallel to the unit vectors ek, the associated
motion variables being ek, fork = 1,2,3. Thus, any possible relative motion has a twist t
given by

ti

LI

181 PI 2 [eeX2 1 + 3 [eCX'P
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t 0I

Figure 4: p yt:?~liair

which can be " PL&St 1U the form

t e e3 []

aiid hr..ice, t" i twist g, aerator .-nughv 14 defined as the -aiatrix coefficient SS of the motion
vax!&Alke' o, Zr 1, 2, 3, i.e.,

eS e((2

&2 0. 8

02 63

Figure 5: The spherical pair
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4.6 THE PLANAR PAIR

Figure 6 below shows a planar kinematic pair, that can be regarded as the series combination
of two prismatic pairs of non-parallel directions, given by unit vectors el and e2. Parallel
to these two vectors and passing through a point 0, we can define a plane 11, its normal
being the unit vector e3. Thus, any motion of 2 relative to 1 has the twist

t=b[O] e 2 e3 p]

Alternatively, the above equation can be written in the form

0 0 e3][b]
lei e2 e3 X P

and hence, the twist generator sought is the 6 x 3 matrix coefficient SE of the motion
variables bh, b2 and 0, namely,

0n 0 e 3 1
* ~SE[~e ~p (23)
• - SE lei e2 e3 x p ]

2• le l
i 

, t. t;

Figure 6: The planar pair

5 The Wrench Generators of the Lower Kinematic Pairs

The counterpart of a twist generator is L orench generator. We define the wrench generator
of a lower kinematic pair as a 6 x 6 matrix mapping an arbitrary wrench into a feasible
constraint wrench, i.e., a wrench acting between two rigid bodies coupled by the aforemen-
tioned lower kinematic pair and that -does not develop any power onto the system, its sole
function being that of keeping the two bodies together.

9

wp W" j%
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Let the twist of the relative motion between two bodies coupled by a lower kinematic

pair be denoted by t. More precisely, we assume that two bodies, labelled 1 and 2. are:1 coupled by a lower kinematic pair and denote the twist of the motion of body 2 with
respect to body 1 by t. Furthermore, the point of body 2 at which the twist is defined, is
P, that is arbitrary.

Moreover, we denote the constraint wrench exerted by body 1 onto body 2 by wp, which
is defined, correspondingly, at point P of body 2. That is, the force of wp is assumed to
be applied at point P. Furthermore, the wrench acting on body 1 due contact with other
bodies than 2 and to the environment, is denoted by A and is comprised of a moment j
and a force Y applied at point 0 of body 1 that is defined as in Figs. 1, 3-6. Now, since
bodies 1 and 2 are coupled via a lower kinematic pair, the wrench transmitted from I to 2
is not all of A, but a linear transformation of the latter, given by the 6 x 6 matrix W that

we call the wrench generator associated with the pair at hand. We thus have

wp = WA (24)

Now, we call S the 6 x r matrix that maps the r-dimensional vector of motion rates ,

associated with the same lower kinematic pair into the twist t, i.e.,

t = Sb (25)

Under the assumption that the kinematic pair is conservative, the foregoing wrench wp
develops no power onto body 2, and hence,

wpTt = 0

Upon substitution of the expressions above for the wrench and the twist into the latter

expression, we have \"
,TWTSO = 0 (26)

Now, the foregoing relation should hold for every value of b and every value of A, and
hence, we must have =

WTS = O(27)

where O6, is the 6 x r zero matrix.

We derive below the wrench generators for all six lower kinematic pairs.

5.1 THE WRENCH GENERATOR OF THE REVOLUTE PAIR

Let wo be the wrench applied by body 1 onto body 2 at point 0 of the revolute axis.
Then, if A, as defined above, is the wrench exerted by other bodies and the environment on
body 1 at the same point 0, the only difference between A and wo is the moment, which,

j for the latter, is i minus it& component along the revolute axis, and hence,

Now, in order to have the wrench at point P, all we do is recall the wrench-transfer formula

of eq.(13), thereby obtaining

2 P-~. P ] [ 1 eeT ]L ]

'P 0 1 0 1

to

__._4 _
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and hence, the wrench generator sought is the coefficient of the wrench A in the last equa-
tion. i.e.,

W'R - e -P (28)0 1

5.2 THE WRENCH GENERATOR OF THE PRISMATIC PAIR

Here, wo and A are defined as before. The only difference between wo and A is now that,
for the latter, the force is v minus its axial component along the direction of the pair, and
hence,

W0 [ 0]T [
Now, in order to have the wrench at point P, we apply the wrench-transfer formula of
eq.(13), thereby obtaining

0 1 0 - e
WP 1 -P][ 1 eeT][v] 'I

and hence, the wrench generator Wp of the prismatic pair is the above coefficient of the
wrench A, i.e.,

wP= ee eeT (29)(1- T)P 1 -0e

5.3 THE WRENCH GENERATOR OF THE SCREW PAIR

Now, in order to find a suitable expression for wo, we proceed as follows: First, let wo
[nT, fT1T. The twist of body 2 with respect to body 1, at point 0 on the screw axis, is
given by to = [eT, peT]To. Now, the wrench does not develop any power onto body 2, and

,, hence, for arbitrary 0,
SWoTto M (nTe + pfTe)i = 0

the wrench components n and f thus being subjected to the constraint

eTn + p e Tf = 0

A suitable wrench that verifies the foregoing conFtraint is given below:
!: ~ ~~~wo-' [lee T _ ][]

and hence,
SwP=[O -P][I-eeT pee T

the desired wrench generator tbns being derived as the product coefficient of A in the
foregoing equation, i.e.,

wu=['-j T  -peeT'P (30

A" 
,,

WH (30)
0_ ___1_

7' .- W



~5.4 THE WRENCH GENERATOR OF THE CYLINDRICAL PAIR

Here, the difference between wo and A lies in both the moment and the force. That is,

the moment and the force of wo are those of A minus the axial component of the moment

or,correspondingly, of the force, i.e.,

(1-eeT)p v 0 1 IpI

the wrench at point P, wp, now being obtained, as usual, by application of the wrench-

transfer formula, i.e.,

w0= 1 - eeT

Thus, the desired wrench generator is the matrix coefficient of the wrench A in the foregoing

expression, namely, VC' "1 -oeT -P(l - e e T ) ]j (1

Wc [j~ .. ieT1 (31) ,I
5.5 THE WBENCH C7 ... '- "v THE SPHERICAL PAIR

The wrench wo now cozains oaly f. and no moment. We can thus write

and hence, upon application of the wrench-transfer formula, we obtain

from which the wrench generator can be readily identified, namely,

WS =[ ] (32)

5.6 THE WRENCH GENERATOR OF THE PLANAR PAIR

tIn this case the wrench wo has a moment with zero component along the normal to the

plane and a force that is normal to the plane. Thus, this wrench takes on the form

e3 e3e

: and hence, the wrench at P becomes

! [1 - e3e T  -Pe3eT1
f Wp = 0 ese T J

from which the wrench generator for this pair is readily identified, i.e.,

WE = [1 -e3e /  -Pe 3e/ (33)

0 e3e3

12
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6 The Twist Annihilators of the Lower Kinematic Pairs

A twist annihilator is defined here as a 6 x 6 singular matrix mapping any of the twist
generators introduced in Section 4 into the 6-dimenional zero array. That is, the columns
of the aforementioned twist generator lie in the nulispace of the corresponding twist anni-
hilator. It should be apparent, then, that, for a given twist generator there are infinitely
many twist annihilators. We will use the relation of eq.(27) to define the twist annihilators
of the six lower kinematic pairs. From that equation it is apparent that we can choose the
twist annihilator of any lower kinematic pair as the transpose of the corresponding wrench
generator.

2. We list below the twist annihilators of all lower kinematic pairs.

6.1 THE TWIST ANNIHILATOR OF THE REVOLUTE

This annihilator is denoted by Ap and is given by

AR= 1eT~ (34)

Now it is a simple matter to show that

ARSR- 0

where 0 is the 6-dimensional zero vector.

6.2 THE TWIST ANNIHILATOR OF THE PRISMATIC PAIR

The twist annihilator of the prismatic pair is denoted by Ap and is given by

Ap [" 10 1 -ee 2 ')](35)

and hence, it is a simple matter to show that

Apap = 0

6.3 THE TWIST ANNIHILATOR OF THE SCREW PAIR

This twist annihilator is given by

AH [P-peeT 7j (36)

and is related to the corresponding twist generator by

AHsH 0

. .
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6.4 THE TWIST ANNIHILATOR OF THE CYLINDRICAL PAIR -1
The twist annihilator of the cylindrical pair is given by0

Ac=(l'-.ee)P 1- eeT] (37)

and thus,
adtuAcSc = 062

where 062 is the 6 x 2 zero matrix.

6.5 THE TWIST ANNIHILATOR OF THE SPHERICAL PAIR

The twist annihilator of the spherical pair is given by
[0 0

As = (38)

This matrix, then, maps Ss into the 6 x 3 zero matrix, i.e.,

AsSs = 063

6.6 THE TWIST ANNIHILATOR OF THE PLANAR PAIR

For the planar pair we have

[1r = e (39) i

and so, AE maps SE into the 6 x 3 zero matrix, i.e.,

AESE = 063

7 Applications

7.1 Input-Output Analysis of a Spatial Four-Bar Linkage

Here we use an RSSR linkage to illustrate our concepts because this is one of the simplest
spatial mechanisms. This mechanism, shown in Fig. 7a, has the same input-output relation
as the corresponding RSUR linkage shown in Fig. 7b. That is, if we denote by angles 0 and
4,' the input and output variables of the two linkages, they both have the same functional
relation f(o, ,) = 0. However, the RSUR linkage does not have the idle degree of freedom
of the RSSR linage. The aforementioned idle degree of freedom pertains to a motion of the
cuupler link about the line of centers of its two spherical pairs. Moreover, in the RSUR
linkage, one spherical pair is replaced by the concatenation of a universal joint, labelled
U, and a ievolute, the overall linkage thus having a total of seven revolutes. Here, the
input variable is angle i, the output being 4'. Now, the output link can be regarded as the

end-effector (EE) of a six-axes serial manipulator that rotates about a fixed axis A, while
keeping fixed its point P, defined as the center of the revolute of the output axis. What we

14
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want is an expression between k and . This expression is derived below by relating first
the joint rates of the serial manipulator with the twist of its EE, t, namely,

ib = t (40)

where the Jacobian matrix J, the twist t and the 6-dimensiona vector of joint rates , take
on the forms

J el e2 e3 e4 es e6 ((41)
lei xpi e 2 XP 2 e3 XP 2 e 4 XP 2 es xps e6XPsJ

.J I s(42)

Thus, in order to derive the relation sought, we have to eliminate the five joint rates
02, ... , 06 from eq.(40), which is done in two steps. In the first step, we eliminate the joint
rates 82, 83 and 84 associated with the spherical joint coupled to the input link. In the
second step, we eliminate the joint rates associated with the remaining universal joint.

The first step is straightforward. All we need is multiply both sides of eq.(40) by the
twist annihilator As of the spherical joint of interest. From our previous discussion, this
annihilator is given by

AS [ 1 (43)

Upon multiplication of both sides of eq.(40) from the left by As, we have

AsJb = Ast

where
AS = 0 0 0 0 0 0 (4af AsJ = [ixzir 00 1 (44a)

li ex(r,-r2) 0 0 0 esx(rs-r2) e6x(rs-r 2)]

a h Ast = [r2 x (44b)

and hence, we end up with the simpler relation

el x (r, - r2) + es x (rs - r 2) s + e6 x (rs - r 2)66 = r 2 x e7 € (45)
Now it is apparent that the two terms containing the undesired joint rates, s and

6, will disappear from the above equation if its two sides are dot-multiplied by the cross
product, k, of the two vector coefficients of these joint rates. The desired result, namely,
expressed as a function of ¢, takes on the form

N. (46a),
(46b)

with x, N and D defined as

k = [es x_(rs - r 2)) x [e6 x.rs - r 2)] (46c)

N -k.r 2 xe 7 , D-k.elx(rl-r 2 ) (46d)
thereby completing all derivations.

t *1
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; Figure 7: RSSR Linkage and its RSUR input-output equivalent
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7.2 JACOBIAN MATRICES OF A WALKING MACHINE t -

SNow we study the multi-loop kinematic chain of a 3-dof robotic mechanical system, as
depicted in Fig. 8a. This figure represents either a multi-legged walking machine with three
feet in contact with the ground or a three-fingered hand grasping an object, whereby theji . ground of the walking machine becomes the objcct of the hand. From Euler's formula for
graphs (Harary, 1972), it is apparent that the foregring kinematic chain has two independent
loops and three degrees of freedom. Now, if this system represents the kinematic structure
of a walking machine, the spherical pairs are used to model the contact between feet and
ground when no sliding is assamed. ]iote that, when one of the legs is in the swing phase,
the leg becomes a two-dof serial manipulator, and hence, it requires two actuators to control
it. Thus, one can assume that each of the revolute pairs is an actuated revolute, and the
whole machine has six motors but only three dof, i.e., we have a redundantly-actuated
machine. We want to derive a relation between the joint rates of the six revolutes and the
twist of the body, namely, the triangular plate shown in the aforementioned figure.

Shown in Fig. 8b is the kinematic chain of the Jth leg, i.e., an open chain composed of
a spherical pair and two revolutes, which can be regarded as a serial manipulator meant to
position point C of the EE (the triangular plate) and to orient the latter. In this figure we ,
assume that the spherical pair is the serial combination of three revolutes with concurrent
axes. The leg is thus modeled as a 5-revolute serial manipulator. Let ejk denote the unit
vector parallel to the axis of the kth revolute and ijk the associated joint variable, for
k 51,...,5 and J = I, 11,I1. Here, we number with a roman numeral the leg and with
an arabic one the joint of a particular leg. Thus, the relation between the joint rates of the
Jth leg and the twist of the EE takes on the usual form

Jjbj = t (47)

where the leg Jacobian Jj is a 6 x 5 matrix, while bj and t are 5-dimensionl and 6- "

dimensional vectors, respectively, defined below:
JJ ei eJ2 ej 3  ej 4  ejs

1!J X PJI X ej2 x J3 x PJi eJ4 X PJ4 eJs x P:s (48a)

The relation sought is now derived by annihilating the idle joint rates from relation
(47). This is done by multiplying both sides of the said equation by the annihilator of the
twist of the spherical joint, Asj, defined as

Asi 'J (49)

We thus obtain

[0 0 0 eJ4x(rJ4-ri) esx(ris-r:l) =r,:xw+

* 1
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Figure 8: Multi-Loop Mechanical System
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If the system under study is redundantly actuated, i.e., if the two revolutes are powered,

then the above relation is all we need, for that relation contains no idle joint rates. That
is, if we let 4 j denote the 2-dimensional vector of actuated joint rates of the Jth leg and

Kj the associated Jacobian of the same leg, we have

Kjo = Asjt (50)

where

K., [eJ4 x (rJ4 - rl) ejs x (rs - ril)] (51a)
t' &~~~J _ [bj ssJ Asit =_ ri X W +I i (51b)

On the other hand, if the machine is driven with one single actuator per leg, namely,
the one coupled to the triangular platform, then we should eliminate iJ4 from the above
expression, which is readily done if we rewrite the reduced relation, eq.(50), in the form

eJ4 X (rj4 - rj1)i4 + eys x (ris - r.i)e.s = ril x w + (52)

Thus, in order tc obtain an expression containing only ijs, all we need is multiply both
sides of any of the two above equations by a suitable annihilator. For example, if we choose

to eliminate Gj4 from the first of those equations, we can do this by dot-multiplying the
two sides of the first equation by ej 4 , thereby deriving

eJ4 x ejs" (ris - rjI)iI5 = eJ4 x Pl . w e J4- (53)

which can be rewritten alternatively as

c.J&s = k3t (54)

where the scalar cj and the 6-dimensional vector kj are defined below

Q eJ4 X eJ5" (r, - rl) (55)

k.,- [(eJ4 X PJ) T ]

Under these conditions, the vector of actuated joint rates, namely, 00, is related to the
twist of the platform as indicated below:

JO0 = Kt (57a)

where J and K are 3 x 3 matrices defined as

J =- diag(cl, cn, cIII) (57b)

k (57c)
k y

J and K thus being the two global Jacobian matrices of the machine. Notice that the above

relation allows the determination of the actuator joint rates for a given twist of the platform.
AMlfrnaitively, if the above mechanical system is a multi-fingered hand, the same relations
allow the determination of the actuator joint rates for a given twist of the manipulated
object.

ii I'
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8 Conclusions

We have introduced the concepts of twist generator and twist annihilator, their duals be-
ing the wrench generator and the wrench annihilator. For every lower kinematic pair we
can define a 6 x f matrix, where f is the degree of freedom of the kinematic pair, that
produces a relative twist of the two coupled links when the f joint rates of the pair are
specified. Likewise, the same kinematic pair transmits a relative constraint wrench between
the coupled links, that does not develop any power onto the whole kinematic chain, its only
role being to keep the two links together. Moreover, we have shown that the twist anni-
hilator of a lower kinematic pair is an orthogonal complement of the corresponding twist
generator. Likewise, the wrench generator of a lower kinematic pair is the transpose of the
corresponding twist anihilator, or a multiple thereof. We believe that these concepts can
find extensive applications in the mechanics of grasping and in better understanding the
problem of hybrid control, i.e., force and motion control of manipulators.
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CONSTRUCTION OF THE EQUATIONS OF MOTION FOR
MULTIBODY DYNAMICS USING POINT AND JOINT
COORDINATES

(

4Parviz E. Nikravesh
Department ofAerospace and Mechanical Engineering
University of Arizona
Tucson, AZ 85721 USA
e-mail: pen@spock.ame.arizona.edu

ABSTRACT. A systematic process for constructing the equations of motion for multibody
systems containing open or closed kinematic loops is presented in this paper. We first
illustrate a nonconventional method for describing the configuration of a body in space
using a set of dependent point coordinates, instead of the more classical set of translational
and rotational coordinates. Based on this point-coordinate description, body mass and
applied loads are also distributed to the points. For muitibody systems, the equations of
motion are constructed as a large set of mixed differential-algebraic equations. For open-loop systems, based on a velocity transformation process, the equations of tuotion are
converted to a minimal set of equations in terms of the system joint accelerations. For
multibody systems with closed kinematic loops, the equations of motion are first written as
a small set of differential-algebraic eq'ations. Then, following a second velocity
transformation process, these equations axe converted to a minimal set of differential
equations. The process of combining the point-coordinate and the joint-coordinate
techniques provides some interesting and computationally time savhig features.

1. Introduction

The derivation of equations of motion for computational multibody dynamics has been the
topic of many research activities. The scope of these activities has been quite broad. Some
techniques allow us to generate the equations of motion in terms of a large set of dependent
coordinates in the form of a large set of differential-algebraic equations. Other techniques
yield the equations of motion as a minimal set of ordinary differential equations. Many
other "in between" approaches provide us with various alternatives. Each technique or
formulation has its own advantages and disadvantages depending on the application and
our needs. A

It is desirable to have the equations of motion in the form of a large set of differential-
algebraic equations due to their simplicity and ease of manipulation. The configuration of a
rigid body is normally described by a set of translational and rotational coordinates. Then
algebraic constraints are introduced to represent the kinematic joints that connect the bodies.
The Lagrange mult;olier technique is employed to represent the joint reaction forces in the ,
equations of motion. Although these formulations are easy to construct, one of their main
drawbacks is their computational inefficiency. A detailed discussion on this type of I
formulation, which is referred to as the absolute coordinate formulation, can be found in
[1l.
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A method which has the simplicity of the absolute coordinate formulation and it also
provides computational efficiency is the so-called joint coordinate formulation [2]. In this
method a set of relative joint coordinates is defined, and the equations of motion are
converted from absolute coordinates to joint coordinates. For open-loop systems this

a, process is done in one step, and the resultant equations are equal in number to the number
of degrees of freedom of the system. The conversion process can be perfomed in two
steps for systems containing closed loops. It has been demonstrated that the joint
coordinate formulation is by far more efficient for computational purposes than the absolute
coordinate formulation.

One elegant method for generating the equations of motion for multibody sys',ems has
been presented in several papers by Garcia de Jalon [3, 4]. This method takes advantage
of a rudimentary idea that describes a body as a collection of points and vectors. The idea
may initially appear as a step backward in the evolutionary process of generating the
equations of motion. However, the method eventually exhibits many interesting and ,
extremely useful features. The coordinates and compoihents of points and vectors that are
defined to describe a body are dependent on each other through kinematic constraints. For
example, we may define twelve coordinates and six constraints to describe a free body in
space. Furthermore, aoditional constraints are introduced to represent the kinematic joints
interconnecting the rigid bodies. This process yields a large set of loosely coupled
differential-algebraic equations of motion. However, these equations can be converted to a
minimal or small set, as in the joint coordinate formulation.

In this paper we first present De Jallon's ideas and formulations with a different slant.
Here, the bodies are described only by points. The mass and the external force associated
with each point are determined as a function of the inertial characteristics of the body ana
the applied force acting on the body. The equations of motion are derived using the
equations of motion for a system of particles and the Lagrange multiplier technique. Then
we present a technique based upon a velocity transformation between the point velocities
and a set of joint velocities, in order to transform the equations of motion to a smaller set.
The resulting equations of motion in terms of the joint accelerations can be expressed in
different forms for systems containing open and closed kinematic loops. These equations
have all the useful features of the original absolute-joint coordinate formulations.
Furthermore, additional improvement in computational efficiency is made mainly due to the
absence of rotational coordinates.

The presentation in this paper is organized in three main parts. We first state the
equations of motion for a rigid body using the traditional translational and rotational
coordinates, or body coordinates. Then, we describe the point coordinate method,
followed by the joint coordinate method. The joint coordinate part is divided into open-
loop and the closed-loop sections. Finally a brief conclusion section is presented.

2. Notation

One-dimensional vectors are denoted by lower-case bold-face characters (q, i, co).
Matrices are denoted by upper-case bold-face characters (C, D).
Scalars are denoted by light-face characters.
A right-subscript denotes a L6.y or a joint index.
A right-superscript denotes a point or a point index.
A left-superscript denotes the index of a reference coordinate system; if the reference
system is a nonmoving system, then the left-superscript is omitted.
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f An over-score "tilde" indicates the conversion of a 3-vector to a 3 x 3 skew-symmetric
a, 0 -a, a,-

matrix, i.e., if a= a2 ,then i= a, 0 -a,

aI -a2  a,

3. Body Coordinates
Traditionally, for specifying the position of a rigid body in a global nonmoving xyz
coordinate system, it has been sufficient to specify the spatial location of the origin and the
angular orientation of a body-fixed 4rjli coordinate system, as shown in Fig. 1. For a
typical body i, vector ci denotes a vector of coordinates that contains a vector of Cartesian
translational coordinates r, = [xi y, z, , and a set of rotational coordinates such as
Euler angles, Euler parameters, etc. A 3 x 3 rotational transformation matrix A, denotes
the angular orientation of the 4iji relative to the xyz system, which can be expressed in
terms of the defined rotational coordinates. With this transformation matrix the
components of a vector described in the body-fixed coordinate system can be transformed
to the xyz coordinate system as s, = Ai ' s. A vector of velocities for body i is defined as
vi, which contains a vector of translational velocities i., and a vector of angular velocities
o)i. A vector of acceleration for this body is denoted as i,, which contains i, and d,.

center
of mass

t Io

x

Figure 1. Locating a body in a nonmoving coordinate system.

The Newton-Euler equations of motion for body i are written as

FmI1 0 i -

[0 ijJ~ &j -~,~
1

or,

where mi is the mass of the body, Ji is the inertia tensor, and fi and ni are the sum of
forces and moments acting on the body. The rotational equations of motion can be
expressed in terms of either the xyz or the 4il components of the vectors. If the inertia
tensor with respect to the 4ijli coordinate system is expressed as the constant matrix 'J1,
then J, =A!J, AT.1
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4. Point Coordinates

The position and orientation of a rigid body in a nonmoving xyz coordinate system can be
described by the position of several points on the body. It will be shown that the most
general case requires four points. These points will be referred to as the primary points.
Other points on the body will be called the secondary or nonprimary points, where their
coordinates can be described in terms of the coordinates of the primary points.

4.1. REPRESENTING A BODY BY PRIMARY POINTS

A rigid body may be represented by two, three, or four primary points, as shown in Figure
2. In such cases we need six, nine, or twelve Cartesian coordinates, respectively, to define
the position of these points. We also need, respectively, one, three, or six constraints of
the type

(r'- r)T (r'- r)-t"j = 0 (2)

Such a constraint keeps the distance between i andj points on the same rigid body a
constant. We will refer to these constraints as primary constraints in order to distinguish
them from the kinematic constraints associated with the kinematic joints. The Cartesian
coordinates of these primary points are referred to as the basic coordinates of the body.
One major advantage of using basic coordinates, instead of three translational and three (or
four) rotational coordinates for a body, is the elimination of the rotational coordinates and
the corresponding rotational transformation matrix.

12 2 2 2

z rl r2  r 2  3 r ' 4 ' 3

z€
P r3

y y
x x x

(a) (b) (c)
Figure 2. Locating a body by its primary points.

4.2. LOCATING A NONPRIMARY POINT

In order to describe the coordinates of a nonprimary point on a body in terms of the body
basic coordinates, we need to examine the two-, three-, and four-point cases separately.

4.2.1. Two Points: Point A on the axis of the two primary points has distances al and a2

from the two primary points. A positive direction from point 1 to point 2 is defined as
shown in Figure 3(a). The coordinates of A can be expressed as rA = (a' r 2 - a2 r') / 1.2

4.2.2. Three Points. We need to locate point A as a function of the coordinates of three
primary points, as shown in Figure 3(b). Assume that, at a given time (e.g., the initial
time), r', r , r , and r are known. (The following argument is also valid if the
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coordinates of these points are known in a local i coordinate system attached to the

body.) The components of vectors s2", s '". and sA are computed as s2" = r2- rl,

s r - r, and = r r . A vectors is defined perpendicular to s 2' and s3j" as
s= .'s 3 '. Now vector can be described in terms of the components of s2", sjL. and j
s as

sA =a s2,+a 2 s3.+a 3 s
or

Sa =Sa

where S -[s2 '' s3,' s] and a =[a' a' a']. Then the coefficient vector a is

computed (only once) as a = SIsA. Then at any given time, since the coefficients are

known, we can determine rA for known r', r2 , and r3as

r = rI+ a(r 2 - r') + a2 (r' - r') + a3 (W2- ')(r 3- r')

4.2.3. Four Points. This is similar to the three-point case, i.e., to locate a point A, only
three of the four points may be used. However, the fourth point can be used to obtain a
third vector, s3", replacing vector s in the previous case. Note that the four primary
points cannot be in the same plane.

a+

)2 AA

2 A 3,

r S A
r S z 2,

ys
yy yy

x

(a) (b)

Figure 3. Locating a nonprimary point A in terms of the basic coordinates.

4.3. KINEMATIC JOINTS

Kinematic joints between rigid bodies can be described in the form of algebraic constraintV." equations between the basic coordinates. For example if the primary point k on body i
coincides with the primary point I on bodyj (e.g., a spherical joint), then wecan write a
vector constraint as

r- r, = 0 (3)

However, the idea behind the use of basic coordinates is to eliminate the need for defining
some, if not all, of these simple constraints. This is achieved by allowing bodies to share
primary points and, hence, not defining any unnecessary basic coordinates.

27 q!
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4.3.1. Spherical Joint If two bodies are connected b a spherical joint .then one primary

" point is shared by the two bodies at the center of the joint as shown in Figure 4(a) In this

case the two bodies are described by seven primary points, twelve primary constraints, and

no constraint for the spherical joint,

4.3.2. Revolute Joint. Two primary points on the joint axis can be shared by the two

bodies as shown in Figure 4(b). In this case we need six primary points and eleven

primary constraints.
R evolute 

oi 
n

Spherical joint 
,,,, 

i

0)!

(a) 
(b)

Figure 4. Shared primary points for bodies connected by spherical or revolute joints.

(a) 
(b)

Figure 5. Primary points and vectors for describing kinematic constraints

representing universal and preimatic joints.

4.3.3. Universal Joint. Assume that vectors si and st. are defined on joint axes

perpendicular to each other, as shown in Figure 5(a). These vectors are also defined

between the primary points on their respective bodies. One primary point is shared by the

bodies at the intersect of the universal joint axes. Therefore, we need seven primary

points. twelve primary constraints, and one additional constraint to keep vectors si and s

perpendicular, 

i.e.,

Ts, s = 0 
(4) .

L ~ 4.3.4. Primac Joint. For a prismatic jont as shown in Figure 5(b), we need to keept

three vetors, si, mand d, parallel. These three vectors are defined on the joint axis.

We also need to eliminate the relative rotation between the two bodies. This can be

accomplished by defning two other vectors, such as ni and ni, perpendicular to each other

and also perpendicular to the joint axis. Therefore, we will have five constraint equaons.

g ; s s  0 
( 5 .a )

oi nt d t 0 

(5.b) 
an

pr e a i

sTsO (4

i 
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4...PimtcJiLFrapimtcjit.a hw nFgr () ene oke
the etrss add aall hs trevcosaedfndo h on xs

We also n ed to elminate te relatie rotatio betweenthe two odies. T is can b
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A vector product, such as in equation 5.a or 5.b, yields only two independent algebraic! equations, therefore we must select two of the three equations as our constraints. Normallydue to the rotation of the bodies during an analysis. the choice of the two equations mayI- change. In order to circumvent this issue completely, we recommend using the scalar i

product constraint twice, instead of a vector product. For example, if vectors ni and mi are

defined perpendicular to vector si, then, instead of equations 5.a and 5.b, we may use
n Ts = 0 , M TS. = 0

n, d=O , mTd= (6)

We can follow a similar procedure to describe the necessary constraints for other types
of kinematic joints between bodies that are defined by basic coordinates.

4.4. KINEMATICS OF A MULTIBODY SYSTEM

For a multibody system with b rigid bodies interconnected by kinematic joints, assume that
we have defined p primary points. Therefore, we need three 3 x p vectors of basic
coordinates, velocities, and accelerations,

The basic coordinates are dependent upon the primary constraints and the kinematic joint

constraints. Assume that there are m independent constraints,

4)(r) = 0 (7)

Note that most, if not all, of these constraints are either linear or quadratic due to the use of
the basic coordinate method. The first and second time derivatives of these constraints
yield the velocity and acceleration constraints,

Di = 0 (8)

i Di+ Di = 0 (9)

where D M cr = DO/Dr is the Jacobian matrix. Since the constraints are either linear or
quadratic, the Jacobian has a very simple form.

4.5. MASS DISTRIBUTION

Normally a rigid body's inertial characteristics are described by its mass and its inertiatensor. Since we are defining a rigid body using several primary points. we need to assign

masses to these and possibly to other points, while preserving the inertial characteristics of
the rigid body. We demonstrate a mass distribution technique for the four-point case first.
then we specialize that to the three- and two-point cases.

29 if
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4.5.1. Four Primary Points. The mass distributions of points must satisfy the total mass
condition, the first moment condition, and the second moment condition. These conditions
provide ten algebraic equations; therefore, we can have up to ten unknowns to solve for.
Four of the unknowns are the masses of the four primary points, and the other six
unknowns can be six coordinates associated with the position of the four primary points.
For example, two of die primary points can have known positions. but the other two can be
placed in such positions that our ten equations are satisfied. Although this process is quite
practical, it may not be desirable due to several reasons: If the positions of some of the
primary points are considered as the unknowns, then the resulting algebraic equations
become nonfinear, which may not be an attractive feature. We also want to have the
freedom of positioning the primary points on the bodies in accordance with the joints that
connect the bodies, in order to reduce the number of basic coordinates. For these reasons,
an alternative technique is proposed.

In addition to the four primary points, we introduce six secondary points with unknown
masses. This makes the total number of unknown masses equal to the number of
equations, i.e., ten. The ten equations are linear in terms of the unknown masses.
However, this requires the position of the secondary points to be described in terms of the
position of the primary points, i.e., in terms of the basic coordinates. There are infinite
possibilities for positioning the six secondary points. One such possibility, which is also
quite simple, is shown in Figure. 6(a). Each secondary point is located between two
primary points. We number the primary points 1, .., 4 and the secondary points 5, .... 10.
Hence, the position of the secondary points can be described as

(10)

Note that a vector si locates a point with respect to the body's mass center.

8 4

10 7

5 3

(a) (b) (c)

' I Figure 6. Primary and secondary points for mass distribution.

The ten equations are written as

mJ =mi(11)

10
isi mi =0 (12)

1)

I0 "

VZs Vs mj=%~ (13)
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The first expression yields one equation, the second expression yields three equations. and
the third expression yields six equations. These equations can be solved for the ten
unknown masses.

4.5.2. Three Primary Points. This is a special case of the four-primary-point formulation.
In order to satisfy the ten equations, the three primary points (1, 2, 3), the three secondary
points (4, 5, 6), and the center of mass of the body must all be in the same plane. As
shown in Figure 6(b), we may assume that these points are in the 471 plane with its origin at
the mass center, i.e., J = 0; j = 1,...,6. Equations 11-13 can be used here again, but for
six masses instead of ten. Some of these ten equations are automatically satisfied: the third
equation in equation 12 and two equations associated with the products of inertia in the
equation 13. One necessary condition is that the moment of inertia about the axis should
be equal to the sum of the moments of inertia about the other two axes, i.e..
j;;) = j ) + j"n'). This condition automatically satisfies another equation in equation 13.

Then we are left with six equations and six unknown masses:
6 6 6i  14?' Z mj :0, Zr{ M) :0,

6 6 6

I,,? ii 42 _l P61,TI i
1"" =1 J=) j.I

4.5.3. Two Primary Points. Primary points'l and 2 form a line that passes through the
mass center as shown in Figure 6(c). One secondary point (point 3) along this line is
defined. Since the 4 and "1 coordinates for all three points are zero, the ten equations yield
the following necessary conditions: all three products of inertia must be zero
(j(4 = j(ng) = j(;4) = 0); the moment of inertia about the axis must be zero (j(; ) = 0); and
the moments of inertia about the other two axes must be equal (j() = j("'). Then we have
three equations in three unknown masses:

mn+m 2 +m =m,

i fm' 'M '=
m' + m, 2 + m =

One likely situation is that the two primary points have equal distances from the mass
center and then the secondary point is positioned at the mass center itself. If the length
between the two primary points is denoted as 1, then the three masses are found to be
m= m' = 2j(4/4) / and m' = mi - 4 j(4) li£. Furthermore, if j(4)=M 2 /12, then
m =mi=m,16 and m3=2m1/3.

4.6. FORCE DISTRIBUTION

A force or a moment acting on a rigid body must be resolved into one or more forces acting
on the primary points. The resultant force and moment associated with this force
distribution must be equivalent to the original force and/or moment.
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4.6. 1. Four Primary Pointi (Force). Consider a single force acting at point P as shown in
Figure 7(a). Point P is positioned from the mass center by vector sp. We need to find an
equivalent set of four forces acting on the four particles. We may assume that the four

forces are all parallel to the original force f', i.e., f -o' f'; j=1,...,4 ,where a' are
four unknown coefficients. We need to satisfy the following conditions:

IVf =ff (14)

f, =f cp(15)
J=1

Since these equations must be valid for any f f, we get four equations in four unknowns:

11 TI" q I,"c' q
'I I I 4 Jd i

Note that the unknown coefficients are a function of the position of point P and not a
function of the magnitude or the direction of the applied force.

4.6.2. Three Primary Points (Force). Since the three primary points, the body mass
center, and the point of application of the force must all be in the same plane, as shown in
Figure 7(b), we can write the following three equations in three unknown coefficients:

,cc

j 2

(a) 2 (b) (c)

Figure 7. A force acting on a body represented by primary points.

; 4.6.3. Two Primary Points (Force). As shown in Figure 7(c), the two primary points
t ~and point P form a straight line. The equations for the three-point case are further

simplified to: I

OL32

P~ f-

L ~ .. ,... t.. .- . - - - ....

"
+  "

72fi-S P
(a (b)(c

Fiur 7. A foc cigo oyrpeetdb rmr ons



ia
Ia

4.6.4. Four Primary Points (Moment). Assume a pure moment acting on the body.
There is ,- 'e than one way to find a set of forces acting on the primary points equivalent to
the applied moment. One solution is to assume six forces with unknown magnitudes acting
on some of the points with known directions. The directions can be defined to be between
the points. as shown in Figure 8. The six forces must satisfy the following equations:

,f =0 (16)

j i =n (17)

If we describe unit vectors u" along the axes, we can solve the following six equations for
six unknown magnitudes:

C

2.1 il ,1 32 4" ,

as

CL6

We note that the solution to these equations is a function of the magnitude and the direction
of the applied moment n.

4 0 4

5 3

Figure 8. Representing a moment by six forces.

Another method for obtaining a solution independent of the applied moment is to
consider four forces acting on the four primary points as

f - X I if n , j =- 1 . , ,4 4q ;

Substituting these forces in equations 16 and 17 (noting that the equations must be valid for
any n) yields

I
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L3  0 fjL 'J
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Since all four forces are in a plane perpendicular to n. then only four of these six algebraic
equations are independent, and they can be solved for the four unknown coefficients.

4.7. EQUATIONS OF MOTION AND INERTIA MATRIX

'j In order to derive the equations of motion for a rigid body using the basic coordinate
representation. we need the equations of motion for a system of particles and the Lagrange
multiplier technique. We first show the process for a two-primary-point case, then we
repeat the process for three- and four-point cases. In each case we assume that the masses
of the primary and secondary points are already determined.

4.7.1. 7wo Primary Points. Assume that two forces. fV and f2 act on two primary
points, as shown in Figure 9. Between the two primary and one secondary points, the
following constraints exist:

(rI- r )T (rl - r2) - k).22 (18.a)

r+r z-r =0 (18.b)

ff2

2
3

Figure 9. Two forces acting on a body represented by
two primary and one secondary points.

The time derivative of these constraints yields the velocity constraints:

(r'- r)(i'- i2 ) = 0 (19.a)
'i"- 2i" =0 (19.b)

Similarly. the acceleration constraints are

~(r - r') iz :)=-i~- i2r (~- i (20.a)

ir+i"-2i 3 =0 (20.b)

, Using the Lagrange multiplier technique. the equations of motion for these three
constrained particles are written as

mr _(rrXX =f' (2 .a)
.m iz+ (r - r:)v X2 f2 (2 1.b)
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M r+2k --=0  (21.c 

where )' contains one multiplier associated with the first constraint equation and :
contains three multipliers associated with the second set of constraints.

In order to eliminate the Lagrange multipliers X: and the acceleration vector ,
associated with the secondary point, we add equations 2 .a and 2 1.c. add equations 2 1.b
and 21.c. then we use equation 20.b. This yields the equations of motion for a rigid body
in terms of the primary point accelerations.

4 4 [(mf+2) m )][ ]_ ] (22)4 4 k

I1'

The complete set of equations of motion contains equations 18.a. 19.a. 20.a. and 22. Note
that the mass matrix is a 6 x 6 matrix.

For the special case with m 1 m' = 2j'i / ' and ml = m, - 4j( ') / ,2. and the

special case with m = m2 = m, / 6 and n-3 = 2m, /3. the'mass matrices become.
respectively.

m , 1) m m 1., ( +I

4.7.2. Three Primary Points. We repeat a process similar to the two-point case by writing
the necessary constrant equations and the equations of motion for three primary and three
secondary points (particles). Then the Lagrange multipliers and the acceleration vectors
associated with the secondary points are eliminated to obtain

mI m, 21 M ilr - -' 0 r'1E=X'I [f']
m.I M,2 1 .J I r B., rr r ' [X .

where
=/ m t + M 2 M 2 +m-f + m M mj  + M 6

4 4 4

m-1 m m '
rn,1 = rn = -- , in3, = rn,3 = in3 .m, = in,, =-- _.

444
In addition to these equations. we must consider three primary constraints and their first

and second time derivatives. .4

4.7.3. Four Primary Points. For this case the equations of motion are found to be
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,,,I in..! r. 3! i:, I i- S2.1 0 0 -s:' -s '  0 X' .r

in3, ! tJk J oI rn . s 0 isd 0 si' 0 iin i0n331i 4 0 s 0 -s4.2 3 i
Mil IMiI rn41 1L MI 1 04.1 If

,. (24)

where s' = r'-r' andmtl =mt~ ~ + M + m ° m10 s '

m1=m ' +m +m m '
4 4

in: =r: 5 m 9  
in 1 , : Tm,= *n1,= m" 4

4 m0  m9

6 n =1m0 - in.4 = 42M6 +m:n -t ram 4 4
mjj = n + 4M6' m .m 7

m,,r= fl

tn.,m4 +~ MI +md +M9  4 rn 4 r 4 4
4

In addition to these equations. we must consider six primary constraints and the'ir first and
second derivatives. Note that the sum of all 16 components of the mass matrix is equal to
the mass of the body.

4.8. DYNAMICS OF A MULTIBODY SYSTEM

The basic coordinate representation of rigid bodies allows us to determine the equations of
motion of a system of multibodies interconnected by kinematic joints quite easily. Here
we demonstrate the process by using a simple example. Assume that two bodies are
connected by a spherical joint, as shown in Figure 10. The system is represented by seven
primary points. Since the primary point number 4 is shared by the two bodies, its mass

* receives contribution from both bodies. Similarly, the applied fcrce on this point receives
contribution from the forces that act on both bodies. The mass matrix and the force vector
are written as:

mn,, m n l 1  n I  1 4

in2 ! m221 m23 5 m 41 f2

Mi/l I .'21msJ l m3,I fs

M= in I in 4  m 3  m" I M45 1 M46 1 m47  , f= f4

m541 MiS MMI rn17 1 f5

MI I Mu uI M61 Vf

M 4 in 75  76 rnI f7

where m = m, + m4, f, = f,+ .' 
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21 136

5

Figure 10. Two bodies connected by a spherical joint.

This example shows how the mass and the force of shared primary points are
I constructed. In general, the equations of motion for a multibody system are written as

(D(r)= 0 7

I,?'

Di = 0 (8)
~DF+ i 0 (9)

Mi DrX =f (25)

where (D(r) = 0 contains all the primary and joint constraints, and the vector of Lagrange
"'ulpiers X contains the multipliers associated with all of the constraints.

5. Joint Coordinate Formulation for Open Loop Systems

The constrained equations of motion expressed by equations 7-9 and 25 can be converted
to a smaller set of equations in te7m) of a set of coordinates known as thejoint coordinates.
For multibody systems with open kinematic loops, this conversion yields a set of ordinary
differential equations equal to the number of degrees of freedom of the system.

In a multibody system with open kinematic loops, we define the necessary joint
coordinates for each kinematic joint in the system. For example, revolute and prismatic
joints require one joint coordinate each, universal and cylindrical joints require two joint
coordinates each, and for a spherical joint we need three joint coordinates. The time
derivative of most joint coordinates is referred to as the joint velocit. For a spherical joint.
the relative angular velocity vector is the joint velocity between the two bodies. If the
system is not connected to the ground by any kinematic joints, then one of the bodies is
selected as afloating base (or root) body. The absolute translational and angular velocities
of the base body are considered as the joint velocity of the base. If the system is connected
to the ground by a kinematic joint, then the ground is selected as afixed base. For the
floating-base and the fixed-base systems shown in Figure I 1 we define the joint velocity
vectors as

Floating base: a 83 Fixed base: q -3

L bJ

For the floating-base case. v, is a 6-vector containing the translational and angular
velocities of the base body. The dimension of 4 in both cases is equal to the number of
degrees of freedom of the system. The joints and their corresponding joint coordinates are
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of the connecting body in the direction of the leaf. In order to clarify the notation and some

of the detirnitions. assume that two bodies in a branch are connected by a joint as shown in
Figure 12. Joint i is called the incoming joint for body i and the exit joint for body k-
Therefore. it is said that joint i belongs to body i, not body k- In an open-loop system.
each body has only one incoming joint. but it may have none. one. or more exit joints.
Each body has a reference point, which is a point defined by its joint. For example. the
center of a spherical joint or any point on the axis of a revolute joint is the reference point
for its body. Again for convenience, the primary point selected as the reference point for a
body carries the same index (number) as the body (and its joint), with the possible
exception of a floating-base body.

( .9 (2 3 8 2 O b
82

base leaf base leaf
(a) (Q

Figure 11. Floating-base and fixed-base open-loop syst;ms.

Primary Point i

* (ro t)U-6 i ) . . (leaf)

Joint i

Figure 12. ITe joint, the reference point, and the primary point belonging to body i.

For multibody systems where the bodies are described by primary points. it can be
shown that iere exists a simple ta sformation between the joint velocity vector and the
vector of po;,it velocitie.,

=B4 (26)

Matrix B is called the velocity transformation marnx. and it is a function of the basic
coordinates. We can show that this matrix is orthogonal to the Jacobian matrix D by
substituting equation 26 into equation 8 to obtain DBi = 0. Since t is a vector of
independent velocities, then

DB=0 (2 7)

The time derivative of equation 26 gives the transformation formula for the accelerations:

= B4+ Bq (28)

Substituting this equation into equation 25, premultiplying both sides by BT. and then
taking advantage of equation 27 yield
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f(29)

where

M =BMB (30)
f = Br(f- M q) (31)

Equauon 29 represents the generalized equations of motion for an open-loop multibody

system.

5.1. VELOCITY TRANSFORMATION MATRIX

Systematic construction of the velocity transformation matrix can be demonstrated with an
example.

Exampl 1: Assume that in the open-loop single-branch system shown in Figure 13(a)
we have a floating-base body, two revolute. one translational, and one spherical joint. As
shown in Figure 13(b), we need to use fifteen primary points to represent the five bodies in

this system. Since body I is selected as the base body, a reference frame 4rll is attached
to its mass center, and the translational and angular velocities of this frame relative to a
nonmoving reference frame are considered as the joint velocity vector of the base. For

tconvenience, we denote the mass center of the base as point 0. We have numbered the
primary points such that points 0, 2, 3, 4 and 5 are the reference points for bodies 1, 2, 3,
4, and 5, respectively. We can write the following velocity equations:

rt i" = ia , .= i.o..aso0o ) , _ a.o20 j6, = O=i Q a7,0

r ~ ~ ~ ~~2 r 02 . i~ a9.20
'S i ia (2 '
4  a4'. 3  , 10 = abo.s0)  i a =r do (a)
i5 r' 'a 0) i.'2 = - , ill i4 -a, o(

'- a= d .5 i-5 i.' - -a' 5 o

()(3)

Revolute

(a)

5)13205i 6 4i

03 141

(b)

Figure 13. An open-loop system and its representation by primary points. '.,
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We note the following relationships:

(0t +U,u,

W3 (2 (b)
(0, =0 03 + (0Jj
(04 0)3 

+ Us045

We now substitute equations (b) into equations (a) in a forward process from the base I
toward the leaf. We also simplify the equations by using relationships such as
d"-- d '-' = d'". Then, the following velocity transformation equation is obtained in
matrix form:

r I -d '

r I -a 2'°

i7  a7.O
i l i"  I -ag.0 -agau,.* i"B I -a8." -da8.2,

i3 3aJ0 2
i'J I - a -, 2u,=- '  I a,°.°  a~. "2'

r' I -a' ''° -a1"F. u 3.

i.12. i a'  .J,2.2u2 u, d12.4i.5  I -ii"" -a,'2u: u ', '

i'. I - a1 2, - u 3 .'

i.4  I , .14.2u u) - 14,' -a.5u,
ii' X a- .  -. U,. U) -a" ? us

In this equation we have the velocity of the primary points on the left-hand side and the
joint velocities on the right-hand side. The coefficient matrix of the joint velocity vector is
the velocity transformation matrix B. Instead of listing the velocities of the primary points
in ascending order, we have grouped them by bodies in order to demonstrate the trangular
form of this matrix. From the structure of this matrix, we note that the matrix can be
partiuoned into submatrices (block matrices), which are associated with different types of
kinematic joints. Table I provides the block matrices for several kinematic joints. The last
column in this table provides the time derivatives of these block matrices, since they are
needed in evaluating B for the equauons of motion. Block matrices for other types of P
joints can oe constructed from the elementary block matrices, as shown in Table 2. Note
that the components of d"' and d' vectors can be computed as
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Table 1. Elementary Block Matrices
Joint rype Matx size den-fer Entries Time dervanve

F oaungbase 3 x6 F' [I ~ [ ~
Revolute 3 x I Rs' [-d"'u,) -(d"'+d"' i u, jJ
Prismatic 3x P' [ux I i",u,I
Spherical x.3l s- U.,'

A velocity transformation matrix can be constructed directly from the topology of themultibody system and the block matrix entries of Table 1. Using the block matrixidentifiers, the B matrix for example I is expressed as

F"'

* F2-0

F8"0 R8-2
F9. R9*

Fj' R". pJJ

B= F' 0  R1°.2 p".3

F"'°  R.- 2  P"
4F"

°  R. 2  P4J S.4.
F

2.  
R1

2
.
2  

p 
2 

" S
2
.4

F""-O R"12  p"l.2 
sll

2

F" ," R", 2 p 3 3  S3,
F R14,2 p' 4" S1.4 R',"

F"" O  R"12 p15.3 SIS.4 R1-

Table 2. Composite Block Matrices

Joint type Marix size Identfier Entries

f-a"' r 117 1
Cyindrical 3 x 2) ,,

U,,
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Eamle 2. The multibody system shown in Figure 14(a) has a fixed-base and threerevolute. and one spherical joint. The primary point representation of the system is shown
in Figure 14(b). Since the incoming joint for body I is fixed to the ground. we need not
consider the primary point I in the vector of velocities since its velocity remains zero.

asFrom the topology of the system. the velocity relations. as well as the B matrix, are written

RJ

j4r R4"3

i' R3" Q
i R6  R6a 20

i.g R8". S8,3
Rp1 R 9.3 L..

i.' R13 s " o0
ill, R lOl Slt,3 R 11,4

-(2) 

10

(4)9

R I4

AR
(3)4

R ()

j(a) (b)

Figure 14. A multi-loop fixed-base system and its primary point representation.

The quaion ofmotion for open-loop multibody systems represent a set of nonlinear
ordinary differential equations that can be put in the standard form

~f(Y' t) (32)

where y and ' arrays contain joint coordinates, velocities. and accelerations as:

q y [q](33)
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The numerical solution of the equauons of motion requires a numencal integration
process that predicts the elements of y at any ume step t. The solution of the equations of
motion must determine and return the elements of 5' to the integration algorithm. The
elements of i, can be obtained from the elements of y by implementing the following steps:

1. The contents of y are known: i.e.. q and 4.
2. In a forward process. moving from the base towards the leaves, compute the
basic coordinates r.
3. Evaluate matrix B.
4. In a forward process, moving from the base towards the leaves, or by using
matrix B. compute the basic velocities i.
5. Evaluate matrix B.
6. Evaluate the basic coordinate mass matrix and force vector. M and f (refer to
equation 25).
7. Evaluate the joint coordinate mass matrix and force vector. M andf (refer to
equations 30 and 3 1)
8. Solve the equations of motion for 4j (refer to equation 29).
9. Construct 5, array and return the contents to the integration algorithm.

6. Joint Coordinate Formulation for Closed-Loop Systems

For multibody systems with closed kinematic loops, the equations of motion in terms of
joint coordinates can be determined in several ways. We first derive these equations as a
set of differential-algebraic equations, then we reduce them to a minimal set of differential
equations, We note that a closed-loop systenm may contain one or more closed loops. A
closed loop can be eliminated from a system by removing one joint, which is called a cut
joint. All matrices and vectors associated with a cut joint carry a right superscript or
subscript 0. By cutting as many joints as the number of closed loops, an open-loop
system. which is called a reduced system. is obtained. This process. in most cases, yields
additional branches, and hence new leaves are formed. The cutting process of a closed
loop is shown in Figure 15.

base ... ... leaf base ..... leaf

cutjoint 0

61 new leaf(a) (b)

Figure 15. A closed-loop system and its reduced open-loop representation.

6.1. DrFFERENTIAL-ALGEBRAIC EQUATIONS OF MOTION

For the reduced system we define a vector of joint coordinate, q. and then its
corresponding matrix B. We note that for uwe cut joint(s), we do not define any joint
coordinates. Furthermore, for the reduced system we write the equations of motion as
described in equation 31. Now the cut joint is put back in order to obtain the original
cloqed loop system. In the original system the joint coordinates that are within a closed
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loop are no Ionizer independent. The dependency of these joint coordinates can be
described by constraint equations between the primary points of the two bodies that share
the cut joint. These constraints are written as

00(r) 0(34)

where r contains only some of the basic coordinates of the connecting bodies. The time
derivative of these constraints provides the velocity constraints.

E -D5 i = DOB4 = Cq = 0 (35)

where D is the Jacobian of the constraints in equation 34 and C DOB is the coefficient ,
matrix of the joint velocities in equation 35. Some of the constraints in equation 34.
depending on the nature of the closed loop, may be redundant. Therefore, some of the
rows of C may also be redundant and must be eliminated. The time derivative of equation
35 yields the acceleration constraints.

=C4+ 4b4 = 0 (36)

where Cb = DoB+ 68B. Due to these constraints, with the use of Lagrange multipliers.
equation 31 is modified as

we Mi-CTv=f (37)

where v contains the Lagrange multipliers. Equations 34-37 form a set of differential-
algebraic equations describing the dynamics of a multibody system with closed loops.

6.1.1. Evaluation of C Matrix The elements of C can be found using different
techniques. The :oduct DOB can be evaluated numerically since the elements of both
matrices can be computed numerically. However, since the elements of D" and B are
available in closed form. the elements of C may be found in closed form also.

The elements of DV can be expressed in closed form for most common kinematic joints
that may end up as cut joints. It is shown in section 4.3 that we can construct the necessary
constraint equations describing various kinematic joints by combining some of the
following constraints (refer to Figure 16):

r , =0 (3), s S5 =0 (4), S1 d=O (6)

where s, =r,-r,, s, r,-r, , d=rl-r'.

In n

II

Figure 16. A cut joint (constraints) between two bodies.
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The entries of the Jacobian matrLx Do associated with these constraints are shown in Table
3. The columns are associated with the primary points that appear in the constraints.

Table 3. Entries of the Jacobian matrix D2'

" Point k m I n
Cut joint ___

Equation (3) I

Equation (4) -sT s7 -s s

E Equation (6) -(d+ s, )T d s

The enres of the C matrix for different cut joints (cut constraints) can be found in
closed form by inspecting the product of the entries of Tables I and 3. 'flie results of such
inspection are shown in Table 4 for different joint coordinates. Figure 17 shows the
indices and vectors used in this table. The entries of the table are stated for a joint in the
branch associated with body i. For a joint in the branch associated with body j, the sign of
the entry must be reversed.

Table 4. Entries of the C matrix

B Floating Revolute Prismatic Sphencal

Cut joint 0 Base
Euation (3) 0 -ae u_ U,
Equation (4) 0 sTiU 0 sT;j

Equation (6) 0 sTaO.,u, -sTu, sTa0.,
Note that d' = dk" =d "

4 
n

Cnout soin F "k

1 Figure 17. The indices and vectors used in genera~ig matrix C.

Exmpe: Consider the closed-loop system shown in Figure 18 containing two

revolute. one spherical, and one universal joint. The system is not attached to the ground.
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therefore one body (body 1) is considered as the floating base. If the universal joint is
selected to be the cut joint, we need the followinP constraints from equations 3 and 4:

-=0 Ta

S3 S,= 0

We def'me the vector ofjoint velocities as ,, (. T, 0 IT. Then Table 3 yields
the Jacobian matrix C.

c °-au- - as " 7-

1 0 a5 du1

L 44 11
4

j

The elements in the column(s) associated with the velocity vector of body I are zero since
body I is a floating-base body. The actual Jacobian is a 4 x 5 matrix, i.e.. the closed loop

* exhibits one degree of freedom.

: u.2  l3.2
(2)

(3) f

(6
Base

114 4

Figure 18. A closed-loop system.

6.1.2. Multiple Loops. A multibody system with more than one closed loop yields a C
matrix containing submatrices that are either uncoupled or loosely coupled. For the two
uncoupled loops shown in Figure 19(a), the two submatrices of C are also uncoupled.

0 0 C] 0

Loop 1

Loop 2

Loop I Loop 2

(a) (b)

Figure 19. Examples of uncoupled and coupled closed-loop systems.
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In this case. the submatrices can be treated separately during the analysis. For the two
coupled loops shown in Figure 19(b), the submatrices of C are coupled.

1c=[ [ c, 1o 0
0 0 [c, 1o0

6.1.3. Integration of the Equations of Motion. The mixed differential-algebraic equations
of mouon for closed-loop multibody systems. presented in equations 34-37, can be solved
for the dynamic response of the system by using a process similar to the algorithm of
section 5.2. The y and ' arrays are defined as in equations 32 and 33, and the first seven
steps of the algorithm remain unchanged:

8. Evaluate matrix C.
9. Solve the equations of motion for jj and v (refer to equations 32 and 33).i0. Construct , array and return the contents to the integration algorithm.

This is a simple algorithm which does not account for possible constraint violation due to

numerical errors.

kLK_ 6.2. DIFFERENTIAL EQUATIONS OF MOTION

The differential-algebraic equations of motion for a closed loop system can be converted to
a set of ordinary-differential equations without any constraints. For this purpose, within
each closed loop we select a set of independent joint velocities, equal to the number of
degrees of freedom associated with the loop, to form a vector of independent joint
velocities 4(). A closed-loop velocity transformation matrix E can be defined as

41 = E4l1) (38)

One characteristic of E is that it is orthogonal to the Jacobian C. This can be shown by
substituting equation 38 into equation 36 to obtain CE4(' ) = 0. Since 4(') contains
independent velocities, then

CE = 0 (39)

The time derivative of equation 38 yields the acceleration transformation formula as:

S=E  + Eq (40)

Now substituting equation 40 into equation 37, premultiplying both sides by ET. then
using equation 39 yields -t

(41)

where ~

M E TU Z (42)
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Er(f - qill") (43)

Equation 41 provides a set of nonlinear ordinary-differential equauons of motion equal to
the number of degrees of freedom of the system.

6.2.1. Evaluation of Matrix E. Matrix E can be obtained from matrix C using the
constraints of equation 35. By partitioning the vector of joint velocities into two dependent
and independent sets, and respectively partitioning C into two submatrices, equation 35 can
be written as

C(I)4(I+ C~d)4 (d) = 0

This yields q -C~drlC'( or

This provides a closed form formula for matrix E as a function of the submatrices of C.

nm E = [_CMCw,] (44)

In most practical applications, matrix C is very small in dimensions. Therefore one way to
obtain E is to evaluate it numerically.

6.2.2. Evaluation of t4('). The acceleration constraints C4+ C4 = 0 can be written as

CE41'-CE /' Cq = 0. The first term in this equation is zero since CE--O. The

!dentities in E result in O's in E. Therefore. we have

(-z ) (45)

6.2.3. JINTEGRATION OF THE EQUATIONS OF MOTION

The equations of motion expressed by equation 41 can be put into the stanuard form of
equation 32. where y and arrays contain the independent joint coordinates, velocities.
and accelerations as

dq

he process of numerical solution of these equations, in general. is similar to that presented
in section 5.2. However, the intermediate steps required in evaluating the vectors and
matrices for equation 41 are more extensive than those of equations 29 or 37.

48

TI_____ ___t

- -.



7. References

1. Nikravesh. P. E.. Computer-Aided Analysis of Mechanical Systems. Prenuce-Hall.
1988.

2. Kim. S. S.. and Vanderploeg, M. J.. "A General and Efficient Method for Dynamic
Analysis of Mechanical Systems Using Velocity Transformaucns." ASME J. Mech.,
Trans., and Auto, in Design, Vol. 108. NO. 2. pp. 176-182. June 1986.

3. Sema. M. A., Aviles. R., and Garcia de Jalon. J.. "Dynamic Analysis of Plane
Mechanisms with Lower Pairs in Basic Coordinates," Mechanisms and Machine Theor.
Vol. 7, No. 6, pp. 397-403. 1982.

4. Garcia de Jalon. J.. Unda. J.. Avello. A.. and Jimenez. J. M.. "Dynamic Analysis of
Three-Dimensional Mechanisms in Natural Coordinates." ASME Design Engineering
Technica, conference. Columbus. OH. October 5-8. 1986, Paper No. 86-DET- 137.

_ _ _ _ _ _ _ _ _ _49

-I '



V--F

I; I

I !

(~

i5

'A1I

-



Symbolic Computations in Multibody Systems

W. SCHIEHLEN
Institute B of Mechanics
University of Stuttgart
W-7000 Stuttgart 80
Germany

ABSTRACT. Symbolc formula manipulation has proven to be an efficient tool in the
dynamical analysis of milt.body systems. A multibody system d2.ta base is introduced
and its implementation ,ising a CAD-3D-software is shown. Starting from the data base
the equations of motion are generated by a coordinate partitioning approach combined
with the projection criterion. For the symbolical.numerical solution inverse kinematics
algorithms are applied. The simulation results are visualized by computer animation. A
four-bar mechanism and a crank-slider mechanism serve as examples.

1 Introductioi.

An integrated approach for modeling, generation of symbolical equations of motion,
simulation and visualization of multibody systems is described. A general object-
oriented data model for all multibody formalisms is presented. With respect to
existing CAD-interfaces, different solid model design methods and various visuali-
zation demands, the data model allows multibody modeling with a direct interface
to a data base. Some software tools like an integrated Newton-Euler formalism are
able to use immediately the parametrized multibody system data base. For multi-
body systems with closed kinematic loops a set of ordinary differential equations is
formulated automatically which can be solved with explicit multistep integration al-
gorithms. This is achieved by different minimal sets of generalized coordinates being
specified by a coordinate partitioning approach during the numerical integration.
The-basic steps and the extreme-flexibility of this-automated mechanical design and
simulation process is demonstrated for mechanisms.

Machines, mechanisms, road vehicles and spacecrafts can be modeled properly as ,

multibody systems for the design and the dynamical analysis. The complexity of
the dynamical equations called for the development of computer-aided formalisms

k--
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a quarter of a center ago. The theoretical background is today available from a
number of textbooks authored e.g. by Roberson and Schwertassek [1], Nikravesh
[21, Haug [3] and Shabana (4]. The state-of-the-art is also presented at a series of
IUTAM/IAVSD symposia. documented in the corresponding proceedings, see, e.g.
Kortfim and Schiehlen [5], Bianchi and Schiehlen [6], Kortdim and Sharp [7].

In addition. a number of commercially distributed computer codes was developed, a
summary of which is given in the Multibody System Handbook [8]. The computer
codes available shows differcnt capabilities: some of them generate only the equa-
tions of motion in numerical or symbolical form, respectively, some of them provide
numerical integration and simulation, too. Moreover, there are also extensive soft-
ware systems on the market which offer additionally graphical data input, animation ,

of body motions and automated signal data analysis.

2 Multibody systems data model

Modeling of a mechanical system by the method of multibody systems is characteri-
zed by a composition of rigid bodies, joints, springs, dampers, and servomotors, see
Figure 1. Force elements like springs, dampers, and servomotors acting in discrete
nodal points result in applied forces and torques on the rigid bodies. Joints with
different properties connecting the various bodies constrain their motion, they are
often identified as constraint elements.

rigid body inertial frame

damperjoint

e center of gravity

spring

Figure 1: Multibody System

For the generation of the equations of motion computer programs may be used. Well
known multibody system computer codes producing exclusively numerical data are
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* ADAMS. Orlandea 9J, and DADS. Haug (10]. To the contrary, computer programs
like SD-FAST, Rosenthal and Sherman (11] and NEWEUL, Kreuzer [12 ] provide the
explicit symbolical expressions for the system equations.

Nowadays CAD-systems are widely embedded in the industrial design and construc-
tion process, while a general application of three-dimensional CAD-systems is still
rare. They support an analytically and topologically complete modeling, a collision
detection, and the calculation of surface and volume properties closely related to the
geometric representation of solid models.

Some couplings of solid modelers with multibody simulation software are realized
for the numerical computer code ADAMS, e.g. for the CAD-system ARIES f13]. A i

CAD-3D-system independent approach is included in the program package RASNA
and is described by H.,lar ad Rosenthal (14].

A system dynamics analysis requires as basic parameters mass, center of gravity, and
moments of inertia of each body related to the geometry model and modeling method
of the CAD-system used. A modular software concept demands an exchange of com-
plete or single object data between the CAD-system and the multibody formalism.
Therefore, a general interface to multibody computer codes is demanded to serve as
a compatible and comfortable CAD-post processor, taking the different algorithms
and implementations of multibody computer codes into account. The commercially
available multibody modeling software tools within CAD-systems are mostly dedi-
cated to a particular multibody dynamics computer code. Often, no options are
supplied for a parametric multibody system description or the modeling is restricted
to either robot, mechanism or vehicle dynamics. This variety of systems, each with
different model data and the growing problems in the exchange of data, requires the
development and production of cheaper and more reliable software products.

Consequently this leads to a database concept for the CAD-3D-modeling of multi-
body systems, see$igure 2:

* Collect the necessary data describing uniquely a multibody model for the dif-
ferent multibody programs.

* Examine the different geometry models of CAD-systems for solids and extract
the relevant data for multibody systems.

e Define a geometry model for the representation of multibody elements,

* Design data types and operations and construct a software interface for a code-
independent modeling of multibody systems.

5?
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Figure 2: Modules within the database concept

A dynamic simulation environment for multibody systtms represents in practice a
large, sophisticated software system. Therefore, an important step is the definition of
an abstract data model on a conceptuil level. A first effort to develop a generalized
data model for multibody systems including symbolical parameters and a postpro-
cessing of CAD-data is described by Otter, Hocke, Daberkow, and Leister (15). Each
of the bodies is described by body-fixed reference frames. Further body-fixed frames,
related joints and force elements are described. Additional symbolical parameters
are defined for the position and orientation of the frames with respect to each other
as well as the mass properties of the bodies. Consequently, for symbolical as well as
numerical formalisms a generalized data base relies upon the basic modeling elements
frame, body, joint and force and is further adapted and extended with respect to
the geometry models in CAD-3D and graphics systems.

A property of a solid in a CAD-3D system can be derived from a face normal spe-
cifying the inner and outer parts of an object, while the coincidence of the vertices of
adjoining faces is not guaranteed. The geometric modeling by parametrized shapes
is appropriate for geometric objects, whose shape is uniquely defined by a resticed
number of parameters. Examples of parametrized shapes with an equivalent wire
representation are shown in Figure 3.

For the global properties volume, surface area, moment of inertia and center of
gravity of solid models, integrals have io be evaluated like

I= fvdV(1
I Soid

se ep.roprt o 111 where fn V =A-3 fs ,yste z) deotedr a scaa o spe-cin

While Constructive Solid Geometry suggests the calculation of mass properties by

see eg.rortenson geom16] , wherese f pe y s z)udenteasclyr popery funtion

nubrojarmtr.Exmlso prmtiedsae it neuvaetwr

representation are __ shown--in Figure 3._

Fo te loalprprtesvoum, urae re, omntofieria ad enero

gravty o soid mdel, inegrls hve t beevalate lik-1,



the following recursively applied formulas

U sf JdV Sc dV + LOdV fvdTV - Id f VdV (
I fVdV = fvdV - fvdV. (2)

hdl-SoW fs~lIS 1:dirlSlid2

5 boundary representations allow the evaluation via surface integrals.

LA LKS LZ ,
LLK

LA frame ~ L
LZS DK

DA Lp damper

Figure 3: Parametrized wire representations of multibody elements

The examination of different geometry models yield the following results:

i,, Mass property calculation modules for multibody systems do not depend on
F, the model geometry (CSG or B-Rep). These results can be related directly

with the input entities needed for the rigid bodies.

9 A planar face model derived from the geometric entities of the solid body
yield the graphic data for the description of the body's shape necessary for

visualization.

The parametrized shapes are well suited to serve as a geometry model for
multibody modeling elements like frame, joint, and force.

The object-oriented data model conceptually developed by Otter et al. [15] results
in classes defined for the elements part. frame, body, interact, joint, force, global, and

param and additional operations valid for these classes.

An object of class body, e.g. Figure 4, comprises alle time-invariant data of a rigid
body. It is obvious that the components inertia matrix and mass of an object of

class body are supplied by their numerical values, too. A location of the center of
gravity different from the body-fixed reference frame is taken into consideration by
reference to an equivalent object of class frame.

Coupling elements of a multibody system are collected in class interact. Interactions
are valid between two objects of class frame on different objects of class part.
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Technical svsteml 11t bodvmodrl class descrption instance of class

object: bodvi

class: body

name 
description 

M

mass dpan umassofbodv mass 0.418

mfranmi name c.o.g frame mfram"

inerta dpsram6)inertia tensor 1l1,122,33,112.113J23
\.-"- - - inertia

tframe name tensor frame 113.0,1296 49.1380.67

Figure 4: Object of class body with its data model

Due to object-oriented software techniques, the definition of abstract data types in
classes furthermore demands a description of the operations valid on the objects.

These operations are designed for a practical, interactive multibody modeling pro-
cess. e.g. in a CAD-3D-system. For all classes the basic operations 'create', 'delete',

'modify', and 'list' are defined, more complex operations take the relationships bet.
ween objects of a multibody system into account.

Further classes are required for the graphical representation, like the actual frame
i axis length, its color or visibility, which depend on the actual multibody size and

modeling state. An equivalent geometry data model for multibody elements well
suitable for machine, robot and vehicle dynamics requires a unique spatial represen-

tation of the multibody elements, their function and physical quantity, see Daberkow
[171. From Figure 3 it is obvious that spatial oarametrized shapes satisfy a graphic
representation for objects of class frame, joint, and force. The definition of the geo-
metry 3D classes g3frame, g3joint and g3force and operations for the geometry data
model is equivalent to the multibody data model and includes classes comprising
color, projection and viewpoint data.

3 Implementation and CAD-3D-realization

The implementation of the object-oriented data model in the data base system
RSYST [18] allows storage and modification of multibody system objects. To realize

fast access and interactive graphic visualization, the implementation of the object-
oriented classes and operations within the CAD-3D-system is performed by means
of data types and routines, which result in a system-independent modeling kernel t

W
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library for multibody systems, see Daberkow 17]. This high level library DAMOS-C
(DAta MOdel Stdard implemented in C) supplies interfaces for modeling, 

input,

~and output as well as for the graphic representation. This open interface allows the
-integration in the commercially available CAD-3D- system SIGRAPH 

[19] and a new

~developed graphics-system.

The integration scheme in Figure 5 shows the interfaces to the CAD-3D) software mo-

duls of SIGRAPH. An extension of the CAD command language supplies additional
commands which are necessary for the execution of multibody modeling operati-

ons. The CAD-3D-system menu is completed by special multibody system icons.

To assure the graphic display of the modeling elements, the parametrized shapes 
are

modeled via the 3D-wireframe entities of the CAD-graphic subsystem. 
A multibody

command language of RSYST serves as a multibody system neutral file to store the

multibody objects, see Otter et al. (20]

Q2D praing &ling Uoermecalclon izipu:&ouetut

F I2D/3D transformation grapdy-system & multibody modeli 
TCheD-3 firrst cmeuib. modeling ommuni. keiazo DAMOS-C

is-ch s User input menu lid modeling, s

step arbtrarysoids creinteacutieyosn o hve clthen p tes ofuaputbod

pCAD-3-systect oca d etrivesn itransformatna netral ombs file t

, CA[ -3DRSYST mulbody

:', lelcommand language

Figure 5: Integration of the multibody modeling kernel

The solid model design of a crank slider mechanism is performed by volume oriented
Stechniques in PARASOLID from a disassembled model. Figure 6. All bodies of the

crank-slider mechanism of a single four stroke engine are shown in Figure 6. Each

body is supplied with adequate density attributes.

The first multibody modeling step is the initialization. Here. an appropriate solid

' is chosen as the inertial body of the multibody system, see Figure 6. la the next i

stparbitrary solids are interactively chosen to have the properties of a multibody

part. Each object of class body retrieves its mass and inertia components from the!

mass property calculation modul of PARASOLID. To visualize the multibody part

property, the equivalent solids are supplied by reference frames located in the center

, of gravity.

By default. the orientation of further created joint and force definition frames is
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parallel to the specified reference frame. The position of these frames is defined
by the CAD-3D-picking commands performed by the user. Figure 6 shows these
modeling steps and the graphic representation of the objects. Joint definition frames

object of class force general

object of class joint

Figure 6: Disassembled and assembled mechanism with joint and force objects

are located along the unit normals of those faces, which form bearing surfaces or
bearing bores of a solid.

A planar system modeled for spatial analysis demands a proper constraint selection.
Redundant constraints remain if a mechanism is supplied with joints of class revolute
and translational, making the determination of reaction forces impossible. Conse-
quently, for an analysis modified joints have to be chosen. Objects of class revolute
are visualized by the parametrized shapes and the wireframe entities. The connec-
tion between the objects of class part by the object of class interact is visualized by
a 3D-line entity between the interacted frames.

The multibody modeling kernel library implemented in the CAD-3D-system supports
an assembling of arbitrary pairs of class part. Figure 6 shows the assembling of
individual solids over the equivalent objects of class joint. By modifying the rangle
component of arbitrary objects of class joint, an initial multibody configuration is
adjusted interactively, providing therefore an initial estimate for closed loop systems.
Finally, an object of class force general is added to the piston part.
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4 Generation of equations of motion starting

from the database

The generation of equations of motion and the embedding of these equations to simu-
lation software is especially in case of large multibody models very time consuming
and prone of errors. Starting from the description of the multibody system stored
on the database, the modul NEWEUL, Kreuzer and Leister [21], generates symbolic

equations of motions and all information necessary for the automatic simulation.
The modul NEWSIM, Leister (22], uses in the next step the compiled symbolical
equations of motion for the simulation. Using the object-oriented datamodel the
modules NEWEUL and NEWSIM are tools of a modular software package of the
multibody system approach. see Figure 7.

In a first step the information stored in the database has to be extracted. In a
modular concept the generation of equations of motion and the simulation have
to be separated. The datamodel includes all the information neccessary for the
generation of the equations of motion and, an adapted version of NEWEUL can be
used as module in the database concept. Based upon a Newton-Euler formalism
the symbolical equations of motion are generated using d'Alembert's or Jourdain's
principle to eliminate the reactions forces and torques, see Ref. [23]. By means
of a special, for the multibody system approach developed formulamanipulator, it
is possible to generate the equations of motion with minimal costs of computation
time, see Kreuzer [12]. The symbolical equations of motion can be used on the one
hand in the simulation environment NEWSIM and on the other hand in any general

kpurpose simulation environment, e.g. ACSL [24] or DSSIM [25].

At first, from the objects interact and joint the topolorrv of the multibody system is
computed. Additionally from the object joint the g. ized coordinates are deter-
mined. The kinematical description of muitibody syb..,ns is done by the definition
of frames relatively to any arbitrary frame. These frames define rigid bodies, joints,
auxiliary frames. and reference frames, too. Additionally the mass-geometric pro-
perties and the applied forces and moments are neccessary. These data can be found
in the objects interact and force, see Figure 7.

The modul NEWSIM serves for the numerical simulation of the generated symbolic
equations of motion. It is easy to study the influence of parameters or to opti-

mize the dynamical behaviour with respect to some specified criteria. NEWSIM has
the possibility to treat additional differential or differential-algebraic equations. For
integration in the time-domain different integration schemes are e.g. Runge-Kutta
methods, Adams-methods. BDF-methods. For multibody systems including cio-
sed loops a modified Adams-Bajhforth-Moulton method is implemented. see Leister
[26]. All neccesary routines for tne automatic simulation software are generated by
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general dynamical system
multibody system a

input vector

output vector
parameter -

global informations
gravity I

parts
rigid body i

mass geometric properties
frames

frame i
interaction

interaction i
conneted fames -

type of interaction NEWSIM
joint -

force 
-sensor

subsystem

subsystem i -
internal values

source code

source code i

i

NEWEUL

simulation results

Figure 7: Dataflow of the datamodel
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NEWEUL, Figure 8. After the compilation and binding step the problem-specific 4

programm takes ail parameters and options from the datafile. This program reads all
options. initial conditions, fixed system parameters like masses, moments of inertia.
geometric data, stiffness constants, and further data from the input file and solves
the equations of motion of the problem.

Data Model

I Prograuin package
I NEWEUL f

I S

Fgu eq iuation of to namc hvrwt NEWEUL rora aadiNEWI

nEWSIM Comppiation
Libraet and Binding

I Problemspecific
O Seimulation Proram
L - -- -- -- -- -- -------- - ---

Figure 8: Simulation of the dynamic behaviour with NEWEUL and NEWSIM

5 Formalism for multibody systems using coor-

dinate partitioning

Modeling dynamical systems by the method of multibody systems results in either
ordinary differential equations (ODEs) using minimal coordinates or coupled diffe-
rential and algebraic equations using cartesian and redundant coordinates (DAEs).
Often ODEs are integrated numerically by explicit multistep integration algorithms
whereas DAEs have to be integrated by implicit or halfimplicit methods. Numeri-
cal experiments have shown, Leister (26]. that the integration algorithms for ODEs
seems to be more efficient than algorithms for DAEs. Thus, it is advantageous to
describe multibody systems by a minimal number of pure differential equations. the
so-called state space form.
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Consider a mechanical system modelled by e generalized coordinates x =
[z .... x r and subject to q holonomic constraints represented b. at least twice
differentiable functions 4(z, t) = [41(x. t) ..... x, t)l]. The governing equations

of constrained motion of the system can 'e written in the following DAE form, see
e.g. Ref. (23]

M(x, t) = h(i x,~t) +Q(x, t) g, (3)

P(Xt)= 0, (4) 2

where M is the e x e symmetric positive-definite mass matrix; h represents the
components of applied forces on the system and the gyroscopic terms; QT = C -

M'/Oz is the q x e constraint matrix; and g = [A1 ... , AqJT conserves Lagrange
multipliers or generalized constraint forces, respectively. The constraint equations
(4) can be differentiated to:

= C(x, t) i + a(z, t) = 0, (5)

= C(z, t) i + b(d, x, t) = 0, (6)

where a = a3/Ot, and b = C + it.

The coordinate partitioning method makes use of the fact that only f = e - q
from the e initial coordinates : are independent, denoted y = [y,. . . . yT; the
others are refered to as the dependent coordinates in the meaning of this method,
XD "- [XO, ... , zDq r

. Thus, according to the symbolic partition,

X.= [YT 4 1D (7)

the constraint equations (5) can be rewritten as

c,(* t) i + cD(X, t) iD + a(z,,) 0 . (8):

For clarity in the mathematical formulation, this symbolic notation, partitioned re-
lative to independent and dependent coordinates, will be used through the whole
paper. In numerical algorithms, however, it is usually more convenient to complete
this task by assigning appropriate addresses to the entries of matrices and vectors
being partitioned.

If constraints (4) are independent, rank(C) = q, there exist at least one set of io
such that the corresponding square submatrix CD is nonsingular. det(CD) # 0.

This enables one to express iD as linear combinations of y, and then iD as linear
combination of , i.e.:

iD = -CD'(Cz, + a) = A(x, t) , + 7(z. t), (9)
XD = A(x,t)jt +( ,x.t). (10)

' .
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Using (9) and (10). the following interdependences between the initial and indepen-
dent velocities and acceieritions can be introduced:

I"== ) + [ = DT + 01!

= DT9ia-  (12)

where I) denotes the f x f identity matrix; and 0 is the f-dimensional null vector.

The f -- e matrix D(z, t) is a priori of maximal rank, and is an orthogonal compie-
ment matrix to the constraint matrix C in the e-space of the system's configuration. ,
i.e. DCT = 0. TiEds, the columns of DT are (contravariant) components of vectors
d( j = ... , f) which span the tangent subspace in the e-space. On the other hand.
the columns of CT are (covariant) components of constraint vectors c, (i = 1. . q)
which span the orthogonal (or constrained) subspace. The tangent and orthogo-
nal subspaces complement each other in the e-space. and DCT = 0 expresses the
orthogonality conditions di • _, = 0 ( = 1(1)f; i = 1(1)q). Since of linear inde-
pendence, cl,...,., d, span a new base ed = t

here ec = and -d, are the base vectors of orthogo-

nal and tangent subspaces, respectively. The transformation formula between the
(covariant) bases e~d and:e: is c]-~(3

o e d e e. = T~d e , (13)
ed [cD-]

where e. = L,,...,_,]T are the base vectors spanning the directions of x. The

appearance of M- 1 in the upper part of Td comes evident after a little inspection.
Since Cr contains covariant components of the base vectors of the orthogonal sub-
space. the transformation between the covariant base vectors e, and e. requires the
CM - ' formula. On the other hand. DT contains contravariant components. and
the transformation between ed and e. is defined by matrix D. For details refer to
Blajer [271.

Using the above definitions, the dynamic equations (3) can be projected into the
r base ea, which is equivalent to the left-sided premultiplication of these equations by

T . The tangential projection (into ed base), after considering (11) and (12), leads
to the minimal set of constraint reaction-free (or canonical) dynamic equations in
independent coordinates

Md(z, t) 9 = hd( , xt) , (14)

where
Mi = DMDT. (15)

(= D(h-M [OT 1T ) (16)
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As M' is the metric tensor matrix of base e, the metric tensor matrix of base e.
can be written as

Md= T_7 =' CM-'Cr 0 1 M . 0] 1)

0 T DMDT1 07'

where M, = CM-ICT and Md = DMDT are the metric tensor matrices of bases
ec and ed, respectively; and 0 is the q x f null matrix. The above relation, which
will be of use in the following, indicates that the orthogonal and tangent subspaces
really complement each other ia the c-space.

By a pending y = v to (14), 2f first-order differential equations in v and y fol-
low. However. since Mj and hd depend on all initial coordinates X, the constraint
equation (4) have to be solved at each step of integration for XD as function of the
current values of y, and this nrocess is usually computationally expensive. Thus. it
is recommendable to integrate (14) together with the kinematic relations (11), and
solve the f + e first-order differential equations directly for v(= y) and x:. Obvi-
ously, such an integration process may lead to violatio. c,,' constraint equations (4).
In order to minimize the phenomenon, Baumgarte's constraint stabilization method
[28'in its form by Ostermeyer (291 can be used. According to this method, (6, can
be rewritten as

0=C(m,t) i+b(i,x,t)+K t(z,t)+Ko z,t) dt =0, (18)

where K, and Ko are q x q diagonal matrices of feedback gains. Note that by
attaching (111 to (14), the first-order kinematic constraint equations (5) are satisfied
in principle, 0 = 0; the resolved form of these equations is equivalent to (11). Thus.
the corresponding stabilization term K 24 0 will not appear in the scheme (18),
which is then a PI-controller scheme. As shown in (29), the integral stabilization

term Ko dt is of great importance in such a scheme.

Implem-nting (18), the final governing equation of motion of the system can be
written as follows:

MAd(z,t) i = hd(Vm,t), (19a)

i = Dr( ,t) V,+ nX(1)b)

where

id = Dh - DM [+ C_1(Ki+IKo dt ] (20)D1 (K,- + o'
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To overcome the stability problem related to the method described, the projection
criterion will be presented for a proper choice of the independent coordinates and a
symbolical inverse kinematics approach will be proposed.

6 Projective criterion for coordinate partitioning

The projective criterion for coordinate partitioning proposed in this paper deals with
a system's configuration space which is not a Cartesian one but an e-dimensional
Riemannian space. The norm of a vector in such a space has thus to be redefined
according to the vector space algebra. The aspects of contravariant/covariant vec-
tor representations are of importance for this definition and for the further base
transformations in the e-space. see e.g. Blajer (271. The transformation matrix
Td defined in (13) is the mapping of the covariant representations k, of vectors

k,= *e' (z = I(1)e).

i-th position

k* = [0,...,0,1,0,.... OT, (21)

, into e base, i.e. -1

-kI(,.) = Tck,= k7CM l " (22)

The vector k defined this way can be interpreted as a unit vector along i, direction.
z. k, = ;iTk = i,, and this elucidate its (covariant) representation in (21). Then.

it comes from (22) that the i-th column of CM - ' is the (covariant) representation
of k, in e_ base. whereas the i-th column of D is the (covariant) representation of
k, in e; base. Denoting these representations by k*() and k(d), respectively, it can
be written that:

CM-'1 = (k;(c) k;(c ... k !(qXC)
e#,, (23)

D = [ k- (d) k ' ] ... (23)

i.e. kO(e) and k*(d) are the z-th columns of CM - 1 and D. respectively.
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Using generalized scalar products. 14.i 2, Ikc)I2 and !kd)l2 can be written as follows:

Ik1' = krM-'k, = M-(i,i),

1 12 - M k-(c, (24)
ik d)2 = (k-(d)T MZk(d)

where M-(i,i) is the iith entry of M-1; and M, and Md are defined in (17).
Basing on (24), the following generalized formulation of the projective criterion for
coordinate partitioning can be introduced:

2i lkld)l2 (k (l~M k,
cos 2 a = I d(i, i) k (25a)

2 ! k)12 (k-(c))TM k((C)
cos /  = 12 = M-(i, i) (25b)

The bigger cos2 ai ( the smaller cos2 ,3) the closer is k. to the tangent hyperplane
and the better x, as an independent coordinate.

In fact two formulae for the reported criterion have been introduced, (25a) and
(25b). Respectively, they express the rquared cosines (generalized to the e-spaces)
of angels betw,,.en the vector k.. and its projections k(d) and !) into the tangent and
orthcgonal subspaces. The matrix Md used in (25a) is actually the mass matrix
of the minimal-dimension dynamic equations (14) or (19a), and thus is available
(more or less explicitly) in its inverted form at each instant of the system motion
simulation. The matrix M, = CM-ICT used in (25b) has to be formulated and
inverted individually. Therefore, the formulation (25a) is recommendable for the
reported formulation.

For the current set y, the reported criterion can be applied occasionally to check
or redefine the choice for y as related those components of x whose corresponding
cos 2 a, (i - 1,..., e) have the biggest values.

7 Application of inverse kinematics algorithms

The essential shortcoming of the coordinate partitioning method is the necessity of
inverting CD in order to determine A = -C-'Ct, rq = C~la, and = C-'b.
required for the formulation of equations (12) or (17). During the simulation process
Co has to be inverted at each step of integration, and this may bring some inefficiency
in computations.
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In this section advantages are emphasized that may arise in the coordinate par.
ntioning approach to the dynamic analysis of constrained mechanical systems by
adapting special algorithms of inverse kinematics developed in the field of robotics..
and of remarkable importance is a technique developed by Woernle [30]. According
to this technique. the kinematic chains are parted into two open chains so that to

, select relations with a reduced number of unknowns. Then. setting some coordinates
to be frozen (independent), the recursive relations for the other (dependent) coor-
dinates as function of the frozen ones are found without introducing the constraint
equations in the form (4), see also Eppinger and Kreuzer [31], and Blajer, Schiehlen
and Schirm (32], and Schiehlen and Blajer (33]. These recursive relations are denoted
symbolically as

XD = XD (i, t), (26)

and are recognized also as closing conditions, Ref. [34]. In fact, (26) are often quite
complex. and the amount of labour required for their derivation depends greatly on
the skill of the investigator in using the inverse kinematics procedures. Nevertheless,
this initial work pays in the further analysis. The (recursive) relations for (9) and
(10) are usually not so laborious to be obtained analytically. They can also be derived
by using computer symbolical formalisms like NEWEUL [8], [21].

The application of inverse kinematics algorithms benefits in analytical (though recur-
sive) formulae for Zn, A, t and 4. This accelerates usually the numerical formulation
of the tangent dynamic equations (14), and the final governing equations of motion
can be written in the following simplified 2f-order form:

Md(y) , = hd(V, Y, t), (27a)

iJ=v (27b)
where k, and h, correspond to M, and h, defined in (15) and (16) after substi-

tuting x = [yl zT(y,t)T and ! - [vT (A(y,t)v + 77(y,t))T]T, where XD(Y,t),

A(y, t), 71(y, t) and 4(v, y, t) represent the recursive formulae from the inverse kine-
matics. Note that the closing conditions (26) replace the constraint equations (4),
i.e. it can be written

(=, t) = -XD(y, t) + XD = 0. (28)

Thus, the solution of (27) is released from the problem of constraint violation. Note
also that, as all the entries of i and x are determined at each step of integration of
(27), an eventual transition from one set of ! to-another will not -yield any inconsi-
stencv in the initial value problem of accordingly reformulated governing equations.
Obviously, an appropriate number of recursive formulae (26). (9) and (10) for diffe-
rent possible (or all) sets of y from x has to be prepared in advance.

Consider the planar four-bar linkage shown in Fig.9. In order to build an open-loop
system. each of the joints 0, (z = 1(1)4) can be cut. yielding a one branch or two 4

4
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Figure 9: Four-bar m~echanism

branch tree, respectively. The coordinates z of the unconstrained system ca~a also
be defined differently. In the example case, the mechanism was cut in joint 04 and
the relative coordinates z = [ajl a2 Cf3]T have been chosen to represent a planar
manipulator with the end-effector fixed in point 04. The dynamic equations of the
system, corresponding to (14), will not be reported here.

The constraints of the system can be expressed either implicitly by constraint equa-
tions (4) or explicitly by closing conditions (26), which yields respective formulations
of matrix D defining the tangent subspace. In the following an application of in-
verse kinematics algorithms leading to recursive relations for the closing conditions
will be demonstrated. The subsequent derivation for the simple example bases on
the approach given by Woernle [30]. According to the approach, the mechanism is
separated, by cutting in joints 02 and 04, into the lower and upper segments, and
the closure condition is

Flower 0 Flower. - Fupe 0 ivu,,per = 0 ,(29)

where 0104-0102, upper := 0302 -0304. Due to the used segmentation,
(29) depends on al and a3 (does not depend on a2), and only one of these coordinates
can be chosen for an independent one in the subsequent derivation (the choice y

[a2] would require a different segmentation). Here, the relations (26), (11) and (12)
are reported only for y = [anh].

Solving (29), one obtaines

03 m Drcc s 3 (-ngen subp2closin ai (30)
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The comiementary reiation for a2 is obtained then as suggested in -301 from

sin:: IC12 COS CI + 1013 COS(QI + a3) + 1113 sin a 3sina2 = 1 + 12 - 2101, sin a,

(31)

1012 sin a 1 + 1013 sin(a1 + a 3 ) - 1113 cos a 3 - 1112
COS 2 = 1 + l - 2ol sin a,

The relations (30) and (31) express recursively a3 (a1 ) and a2 (al) as defined in (26).
Differentiation of these closing conditions leads to:

d3= t1 ,

1213 sin a 3

(32)
loCOS(ai + a2)

62 13 sin a 3

and therefore, the matrix D defined in (11) can be stated as

S1011 cos a + 1012 cos(a1 + 52 ) 1o1 cos (33D", 1 2 1 3 s i n s l -" 1 2 3 S i n O t " ( 3 3 )

After differentiating (32) the vector 4 introduced in (12) can be formed as shown by
Blajer, Schiehlen and Schirm (32].

1.0 Projective criterion
: a 1

a2
: 0.5

a
3

r0!
*0 3;r/2 a 2a -

Figure 10: Projective criterion (four-bar mechanism)

Now the problem of the best independent coordinate choice is discussed. For pdrti-

culax linkage data. the results obtained by using the projective criterion are shown
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in Fig.10. The linkage geometry was set to assure that the choice y [a] never
leads to a singularity, enabling one to plot the results throughout the whole range
a, E < 0. 27r >. As seen, both a, and Q2 are acceptable choices for y in any linkage
configuration, none of them, however, can be assigned to be the best independent
coordinate over the hole range of a,. It is evident, also. that the choice y = [a31 is
the worst as leading to singularities at a, = -r/2 and a, = 3-'/2. and due to relatively
small values of tangent projections.

The numerical r;mulation can now be carried out in the best independent coordinate
according to the projective criterion, i.e. changes between the coordinates a, and
a2 are necessary to ensure the integration with the best coordinate. This change
can be done without a loss in integration order and stepsize by using a modified
Adams-Bashforth integration code.

8 Visualization of simulation results

A convenient verification a dynamic visualization of a multibody system simulation is
obtained by a 3D computer graphics animation. Animation methods differ according
to the geometry model, rendering algorithms and possible user interaction. The most
sophisticated animation method is achieved by rendering algorithms like raytracing
and radiosity. These rendering techniques result in realistic images, but suffer from
* .me-consuming computations. During image display, no interactive modification of
the view projection is possible. A raytraced image of the crank-slider mechanism is
shown in Figure 11.

Most CAD-3D-systems offer modules for the generation of images with hidden line
and hidden surfaces removal and shaded surfaces. Often, the solid model and ren-
dering algorithms yield sophisticated 2D drawings for documentation purposes. but
allow a dynamic visualization only in a wireframe mode.

Consequently the unified approach to display a broad variety of simulation result
for different initial conditions, visualization systems and applications is based on the
planar face model. The visualization module VISANI for the interactive, high speed
animation oi arbitrary muitibody systems is described by Daberkow [17]. As a result
of the simulation, a time plot of the crankshaft bearing force of the mechanism under
an applied piston gas force and an animated sequence is shown in Figure 12.
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Figure 11: Raytracing of crank slider mechanism
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Figure 12: Time plot and animated sequences of the crank slider mechanism

711



<FF7

9 Conclusion

In this paper an integrated modeling, simulation and visualization of multibody sy-
stem dynamics is introduced. A unified general data model including the graphic
description is presented. To support tne preceding CAD-3D-modeling stage, a unified
spatial graphic representation for multibody elements is designed. Object-oriented
classes and operations are then implemented in a system independent multibody
modeling kernel library and integrated in a commercial CAD-3D system. From the
multibody model data base, an integrated Newton-Euler formalism generates a set
of symbolical ordinary differential equations, which are solved by explicit multistep
integration algorithms. Thereby, a minimal set of generalized coordinates is specified
during numerical integration without restart of the integration algorithm, using the
projection method within the coordinate partitioning approach. The final visualiza-
tion of the crank slider mec kanism demonstrates that this integrated approach fits
the criteria of a modular, automated design and simulation environment.
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ON-LINE DYNAMIC ANALYSIS OF MECHANICAL SYSTEMS

Thomas R. Kane
Professor of Applied Mechanics
Stanford University
Stanford, CA 94305
USA

ABSTRACT. By working with a symbol manipulation computer program created
specifically for this purpose, a dynamicist can use a personal computer to analyze
motions of mechanical systems in a highly efficient manner. The theory underlying
the computer program is discussed, and illustrative examples are presented.

1. Introduction

The behavior of a mechanical system possessing a finite number of degrees of
freedom is governed, in general, by a set of coupled, nonlinear, ordinary differential
equations. Since solutions of such equations only rarely can be found in closed form,
it was a rather thankless task to formulate such equations prior to the advent of
computers. Not surprisingly, the subject of equation formulation methodology thus
received scant attention until computers made it possible to obtain with little effort
numerical solutions of nonlinear differential equations; and then it became apparent
that the task of formulating equations of motion could become very burdensome,
especially in connection with many problems of practical interest. To overcome this
difficulty, dynamicists began to create computer programs that could formulate
equations of motion, as well as solve them numerically; and many such "multibody
programs", as they have come to be called, are widely used today.

Powerful and useful as they may be, all multibody programs suffer to varying
degrees from one major defect, which is that they impose restrictions on the way a
system is modeled mathematically. Most notably, the dependent variables employed
tend to be fixed once and for all, which means that they can be quite unsuitable
in some situations, leading to computationally inefficient solutions. Additionally, the
class of systems accommodated by a given multibody program usually is quite limited.
For example, only systems with a certain topology may be analyzable, say a tree-
structure; or Coulomb friction forces may be inadmissible, etc. To say it simply, the
analyst resorting to the use of a multibody program frequently sacrifices freedom for
convenience.
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A relatively recent development in the field of computing makes it possible at

present to formulate equations of motion with the aid of a computer while retainin.
all of the freedom enjoyed by an analyst deriving equations of motion "by hand
This development is the creation of symbol manipulation languages and their incor-
poration in programs specifically designed for dynamic analysis. With the aid of such
a program, one can perform analytical work with a personal computer, doing so in an
interactive fashion, that is. by typing a command that causes the computer to per-
form an analytical task and to report the result almost instantaneously, whereupon
one issue, the next command, and so on. It is the purpose of this paper to describe
this process in detail, to explore the rational, underlying the process, to discuss a
number of related issues, and to present some illustrative examples.

The sequel is arranged as follows. Section 2 deals with on-line mathematical
analyses not involving any mechanics-related commands. In Sec. 3, problems of
kinematics are addressed. Inertia calculations are the subject of Sec. 4, and issues
that arise when one attempts to employ a symbol manipulator to formulate equations
of motion are explored in Sec. 5. The on-line determination of forces is considered in
Sec. 6. and concluding remarks appear in Sec. 7.

2. On-line Symbolic Mathematics

Computer programs capable of carrying out symbolic manipulations have existed
for a long time, and have been used to perform tasks such as, for example, expanding
(A + B + C)7 to obtain

A7 +~ B7 +C 7 +7(AB 6 +AC +BA 6 +BC6 +CA6 +CB s)
+ 21(A 2 B' + A2 Cs + A'B' + A5C2 - B2 CC + B5 C2 )
+ 35(A 3B 4 + A3C 4 + A4B 3 + A4 C 3 + B3C 4+ B4 C3 )
+ 42(ABC5 + ACB 5 + BCA 5 ) + 105(AB 2 C4 + AB 4C2

+ BA2C' + BA4C2 + CAB 4 + CA4B') + 140(AB 3 C3

+ BA3 C + CA3 B3 ) + 210(A B2 C + A2B C - A3B2 C2 )

Originally, this necessitated creating a program and then executing it on a mainframe
computer, but more recently it has become possible to type an instruction such as.
for example,

EXPAND((A+B+C) ̂7)

on a personal computer and then see the result displayed on the computer screen
within a short time after pressing the ENTER key. To illustrate some capabilities
of a particular program of this kind, called AUTOLEV, let us consider a number of
specific examples.

Suppose that F and F2, the first a function of x, the second a function of .r and
y, are given by

F, = 3x - 5cos(z), F2 = ex/

and we need the derivative of F, with respect to x and the partial derivative of F2
with respect to y. Activation of AUTOLEV causes the line number (1) to appear on

I6
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the screen. whereupon one types VARIABLES X,Y. so that the screen now appears as

follows:

(1) VARIABLES X,Y

(2)

Next. typing F1 = 3*X-5*COS(X) and pressing ENTER causes ,he following to ap-
pear on the screen:

(1) VARIABLES X,Y

(2) FI=3*X-5*COS(X) ,

>>(3) F1 = 3*X-5*COS(X)

Line (3) is an "echo" of the assignment statement entered in line (2). No such echo
was produced by line (1) because this line serves as a declaration rather than as an

f assignment statement. Proceeding similarly, one can enter

(4) F2=EXP(X*Y)

to which the program responds with

>>(5) F2 = EXP(X*Y)

and now the desired derivatives are found by typing

" (6) DF1_DX=D(Fl ,X)

which produces

>(7) DFIDX = 3 + 5*SIN(X)

while entering

(8) DF2_DY=D(F2,Y)

leads to

>>(9) DF2_DY = X*EXP(X*Y)

The left-hand sides of lines (6) and (8) are names chosen by the analyst. whereas
D(Fl,X) and D(F2,Y) are instructions issued in the language of the program.

V" The lines
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(1) CONSTA7S A,B,C,D,E,F

(2) U-[A,B,C]

>>(3) U - (A, B, C]
(4) V=[D;E;F]

>>(5) V E CD, E, F]

(6) W=U*V

cause AUTOLEV to treat U and V as a 1 x 3 row matrix and a 3 x I column matrix.
respectively, and to report the inner product of U and V' as the 1 x I matrix W in
line i 7r

>>(7) W - (A*D + B*E + D*F)

If a 3 x 3 matrix R is introduced as

(8) R = [A,B,C;D,B,L;F,A,D]

>>(9) R z [A, B, C; D, B, E; F, A, D]

then the inverse of R. arbitrarily called S by the user, is generated in response to

(10) S a INVERT(R)

which yields

',>( i ) S 1,1 -(A*E-B*D)/(B*D*(A-D)-B*F*(C-E)-A*(A*E-C*D))
">'12) S '1.2" (AC-B*D) / (B*D* (A-D)-B*F* (C-E)-A* (A*E-C*D))S13 S = "*(C-E)/(B*D*(A-D)-B*F*(C-E)-A*(A*E-C*D))
>>614 S[ 2,1] (D-I-E*F)/(B*D*(A-D)-B*F*(C-E)-A*(A*E-C*D))

>>(15) S 22: - (A J-C*F)/(B*D*(A-D)-B*F*(C-E)-A*(A*E-C*D))
>>16) S 2,3 = -(A*E-C*D)/(B*D*(A-D)-B*F*(C-E)-A*(A*E-C*D))
>> 17) S 3,1 = (A*D-B*F)/(B*DO(A D)-B*F*(C-E)-A*(A*E. C*D))
>>18 S3,2 : -(A-2-B*F)/(B*D*(A-D)-B*F*(C-E)-A*(A*E-C*D))
>> 19 S L33. B*(A-D)/(B*D*(A-D)-B*F*(C-E)-A*(A*E-C*D))

Representative vector operations. so important in dynamics, cap be performed by

introducing a reference frame, say N, with the declaration

(20) FRAMES N

which causes AUTOLEV to regard Ni>. N2>, and N3> as a right-handed set of mu-
tually perpendicular unit vectors normally written N1 . N2, N3. Hence, vectors
V = AN 1 + BN 2 + CN 3 and W = DN 1 + EN2 + FN3 can be entered as

(3) V>=A*N>+B*N2>+C*N3>

>>(4) V> = A*N1> + B*N2> + C*N3>
(5) W>=D*N>+E*N2>+F*N3>

>>(6) W> D*N1> + E*N2> + F*N3>
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and X. the cross-product of V and W. is then found by typing

(7) X>=CROSS(V>,W>)

which produces

>>(8) X> = (B*F-C*E)*NI> + (C*D-A*F)*N2> + (A*E-B*D)*N3>

Furthermore. since operations can be 'nested". the scalar triple product of V. W.
and X is obtained as

(9) TRIPLE=DDT(V>,COSS(W>,X>))

>>(1O) TRIPLE = A*(E*(A*E-B*D)+F*(A*F-C*D))
- C*(D*(A*F-C*D)+E*(B*F-C*E))
- B* (D* (A*E-B KD)-F* (B*F-C*E))

As a final illustration in the use of AUTOLEV for purely mathematical purposes.
we consider the program's ability to simplify expressions such as, for example.

fcos(A) + 5 cos3(A) + 6 cos 3(A) tan2 (A)]/ cos(A)

Simplification is accomplished by typing

(11) (COS(A)+S*COS(A)-3+6*COS(A)-3*TAN(A) -2)/COS(A)

and pressing ENTER, which produces

RESULT: 6 + SIN(A)-2

3. On-Line Kinematic Analysis

Certain problems of kinematics can be solved on-line simply by using the meth-
ods of analytic geometry. For example, Fig. 1 shows a manipulator formed by pin-
connected elements A, B, C, and D. The lengths X1, X2, and x3 of A, B. and C.
respectively, are presumed to be variable, whereas LD, the length of D is fixed. D
represents a load-carrying platform, and the system may be regarded as driven either
by motors at points , ,and I, which can cause the angles QA, QB. and QC to
take on desired values, or by rack-and-pinion drives that cause the lengths of A. B.
and C to acquire assigned values.

For given values of the angles QA, QB. QC and the lengths LD. LE. LF. it is
a relatively simple matter to find xi, x2. and x3, for this can be accomplished by
solving a set of linear equations. By way of contrast, to deal with what is sometimes
called the "inverse kinematics" of the system, that is. to determine the values of QA.
QB, QC. and QD corresponding to given values of xj. T2 , x3 , LD. LE, and LF. one
must solve a set of coupled. nonfinear equations, namely,

fx cos(QA) + LD cos(QD) - X2 cos(QB) - LF = 0
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x, sin(QA) + LD sin(QD) - X2 sin(QB) = 0

X2 cos(QB) - X3 cos(QC) - LE = 0

X2 sin(QB) - X3 sin(QC) = 0

To this end. one can execute the AUTOLEV program

VARIABLES QA,QB,QC,QD
CONSTANTS X1,X2,X3,LD,LE,LF
Z 14 =XI*COS QA)+LD*COS (QD)-X2*COS(QB)-LF
Z '2' =XI*SIN QA +LD*SIN(QD)-X2*SIN(QB)
Z 3j X2*COS (QB -X3*COS (QC) -LE
Z 1 X2*SIN (QB) -X3*SIN (QC)
NONLINEAR(Z,QA,QB,QC,QD)

which causes AUTOLEV to create a FORTRAN program called NONLIN.FOR and
to prompt one to enter in a file called NONLIN.IN the values of the given quantities,
as well as guesses for the values of QA. QB, QC, and QD• Execution of the program
NONLIN.FOR then produces QA, QB, QC, QD. For example, for x, = 3.1 m,1 z2 3.5 m, X3 = 5.1 m, LD = 4.0 m, LE = 4.3 m, LF = 4.4 m, one obtains

QA 71.50 deg, QB = 80.96 deg, QC = 137.3 deg, QD = 74.21 deg.

Vector analysis comes into play in dynamics in connection with angular velocities
and angular accelerations of rigid bodies and velocities and accelerations of points.
A device represented schematically by Fig. 2 can serve as a case in point. It consists
of a rigid body A that rotates in a reference frame N with a constant angular speed
14I about an axis that is fixed in A and N parallel to a unit vector Al and that
supports an arm B which rotates relative to A with a constant angular speed W2
about an axis fixed in A and B and parallel to a unit vector A2. The magnitude
of the acceleration of point D in N is to be expressed in terms of W1, W2, LI and
L2 for an instant at which the angle E in Fig. 2 is equal to 90 deg. An AUTOLEV
solution of this problem begins with the declarations

CONSTANTS WI,W2,LI,L2
FRAMES N,A,B
POINTS C,D

Next, the velocity of C in N, the angular velocity of A in N, the angular velocity of
B in N, and the position vector from C to D are entered by inspection as

VC.N>=-LI*WI*A3>
WAN>=Wl*Al>
WB.N>=WAN>-W2*A3>
PCD>=L2*Al>

Corresponding equations can be produced equally easily by hand. But the next
command,

A ALFBN>=DT (W.BN>,N)
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creates an expression for the angular acceleration, of B in N by employing the pro-
gram's ability to differentiate vectors in a specified reference frame. and this saves a
considerable amount of hand labor. Mloreover, once this line has been executed. sig-
nificant savings in time and effort are realized when an expression for the acceleration
of point D in IV is created in response to the command

.11

A2PTS(N,B,C,D)

This command, based on a familiar kinematical theorem, instructs AUTOLEV to find
the acceleration of C in N by differentiating the velocity of C in N with respect to t
in N and then adding to the resulting vector the vector produced with the command

CROSS (ALFBN>, P_C_D>) +CROSS (WBN>, CROSS (WBN>, PCD>))

AUTOLEV calls the result ADN>, sL that all that remains to be done is to type

MAGNITUDE=MAG (AD_N>)

which yields

>>(17) MAGNITUDE = (LI-2*WIr4+L2-2*W2"4+4*L22*WI12*W2-2) 0.5

This example shows that the symbol manipulato; under consideration "knows" certain
* ,, kinematical theorems. In fact, it contains many co.mands based on theorems dealing

with orientation angles. Euler parameters, directic, - cosines, etc.

4. On-Line Inertia Calculations

Figure 3 shows a solid, right-circular cone C of radius R and height H, as well as
mutually perpendicular unit vectors C1, C2, C3. The moment of inertia of C about
line A - B, to be denoted by IAB, is to be expressed in term of R, H, and the mass
M of C, in terms of which I1, 12, 13, the central moments of inertia of C, are given
by

Il = 13 = 3M(4R2 + H2 ), 12 3MR 2/1O
We begin the analysis with the declarations

CONSTANTS R,H
BODIES C
MASS C,M
POINTS A,B

and enter I1 and 12 as

I1=3*M* (4*R"2+H-2)
12=3*M*R-2/10

The central inertia dyadic of C is created with the line
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INERTIA C,I1,12,I1,O,O,O

and the position vector from C% the mass center ot C. to point A. by typing

PCSTARA>=0 75*H*C2>

The command

PARALLEL (C,A

Ii thereupon causes AUTOLEV to construct the inertia dyadic of C for point A, which
brings us into position to find IAB by pre- and post-mrultiplying this dyadic with a

_unit vector parallel to A - B. This unit vector. which we call AB>. is formed with the

°lin

AB>UNITVEC(R*C> -H*2>)

All that remains to be done, therefore. is to issue the command

IAB=EXPAND(DOT(AB>,DOT(I.C-A ,AB>))

which produces

j 18) lAB = 3.8625*M*R-2*(H-2+3. 1O67961*R2)/(H-2+IR2)

Should it be necessary to evaluate tAB for particular values of M, R, and H, say
M = 1, R = 2, H = 3, this is accomplished with the additional line

IABVALUE=EVALUATE(IAB,=1R=2,H=3)

which leads to the response

>>(20) IABVALUE =25.465385

This example shows that AUTOLEV incorporates certain fundamental theorems as-
sociated with inertia concepts.

5. On-Line Formulation of Dynamical Equations of Mution

Dynamical equations of motion are created by expressing dynamical principles or
formalisms, such as Newton's laws, the angular momentum principle, or Lagrange's
equations, in terms of quantities characterizing the physical properties and behavior
of a material system. Clearly, some of the on-line analysis capabilities already dis-
cussed can be used for this purpose; but, as we shall see, on-line equation of motion
formulation can be performed most effectively only when certain issues specific to this
process have been resolved optimally.
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Suppose that an analysis of rocket flight is to be undertaken by reference to the
simple, planar model suggested by Fig. 4, where q (i = 1,2,3) play the roles of
generalized coordinates in the sense of Lagrange, while the set of all contazt and
distance forces acting on the rocket A is represented by the measure number TC of
the torque of a couple amd the measure numbers P and P2 of a force applied at A.
the mass center of A. To formulate dynamical equations of motion with the aid of
Lagrange's method, one can begin by introducing v, (i = 1,2,3) via the kinematical
differential equations~dq,/dt = v, (i = 1,2,3)

Next, after expressing the kinetic energy K of A as

K [M(v -i- q~vI) + 1(V2 + v3 )2)

CI
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and the generalized forces F, (i = 1.2.3) as

F1 = P, cos(q3) - P2 sin(q3)

F2 = qj(PI sin(q3) + P2 cos(q3)] + TC

F3 = TC

one substitutes into Lagrange's equations. This necessitates various differentiations
of K. which can be performed conveniently with a symbol manipulation computer
program. For example, employing AUTOLEV, we enter the lines

CONSTANTS M I
VARIABLES Qt33,V[3],P[2],TC
K=0.5*(M* (Vi-2+Q 12*V2-2)+I*(V2+V3) 2)
Fl=Pl*COS (Q3)-P2*SIN(Q3)
F2=Ql*(PI*SIN(Q3)+P2*COS(Q3) )+TC
F3=TC
QI'=V1
Q2'=V2
Q3'V3

and then create the dynamical equations of motion with the commands

Z 1] =EXPAND CDT (D (K,Vl))-D (K,Ql) -Fl)
Z[2] =EXPAND DT (D K,V2) -D(K,IQ2) -F2)
Z[3=EXPAND(DT(D(K,V3))-D(K,Q3)-F3)

The resulting equations are

M(dvi/dt - qv ) = P cos(q 3) - P2 sin(q3)

(I + Mq2)dv2 /dt + Idv3/dt + 2Mqlvlv2 = qj[P sin(q3) P2 cos(q3 )] - TC

i(dv2/dt + dv3 /dt) - TC

The relative complexity of these equations is attributable to the fact that vi =

1. 2, 3) are poor variables for dealing with the problem at hand. To see this, let us
examine what happens when one uses as dependent variables, in addition to qi, q2,
and q3, generalized speeds ul, u2, and u3 defined as follows: ul and u 2 are the measure
numbers of the axial and transverse components of the inertial velocity of the mass
center of A, and U3 is an inertial angular speed of A. This leads to the kinematical
differential equations

dqu/dt = ul cos(q3) - U2 sin(q3)
dq2l/dt = [u, sin(q3) + u2 cos(q3)]/ql

* dq3/dt = U3 - [u, sin(q3) + u2 cos(q3)]/ql

and, resorting to the use of Newton-Euler methods by summing forces in the axial
and transverse directions, one obtains the two dynamical equations

C M(duI/dt - u2u3) = P

P M(du2 /dt + u3ui) P2
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%%"Ile taking moments about the mass center of A yields the remaining dynamical
e(uatilon.

Idu 3/dt = TC

O.:ouslv. these equations are significantly simpler than tneir earlier counterparts.The reason we used Newton-Euler methods. rather than Lagrange's equations. to
formulate them is that the latter are inapplicable in their usual form under the present
circumstances, that is, when the kinetic energy is regarded as a function of q, and -
tr = 1.2.3), rather than as a function of qr and dq /dt (r = 1,2,3). For this reas(
alone it is inadvisable to base a computer program intended to facilitate equation
of motion formulation on Lagrange's equations. An additional fact that mitigates
against the use of Lagrange's equations is that such use frequently necessitates the
performing of operations leading to terms that ultimately cancel each other or, if they
do not. give rise to computations that have no effect on final results. For purposes
of computerized symbol manipulation, this is an important consideration, for it has
serious implications regarding computer memory usage.

What about Newton-Euler methods? Does the fact that they serve well in con-
nection with the rocket-flight example justify the inference that, in general. they
constitute a sound basis for com puterized equation of motion formulation? It be-
comes apparent that this is not the case when one attempts to formulate equations
of motion for a system such as, for example, the one depicted in Fig. 1, that is. one
containing "loops." Under these circumstances, the use of Newton-Euler methods
for the formulation of equations of motion necessarily entails the introduction and
subsequent elimination of certain constraint forces, processes which are sufficiently
algcithmically subtle and computationally intensive to give rise to significant obsta-

. ,cles to the creation of an efficient on-line equation of motion formulation program.

As is explained in detail in [1], the equations

F, + F, =O (r= 1,...,p)

furnish an alternative to Lagrange's equations and Newton-Euler methods as a point
of departure for the formulation of dynamical equations of motion of any mechanical
system possessing p degrees of frc'dom. Given such a system, one begins the equation
formulation process by performing a "first level" kinematic analysis, that is, by con-
structing expressions for angular velocities of rigid bodies, velocities of mass centers
of these bodies, and velocities of particles. Next, one creates vectors representing
active forces and torques, which brings one into position to form expressions for
and F* by carrying out operations that can be programmed once andfor all. This is
the rationale underlying the program AUTOLEV. As a first illustrative example. we
return to the rocket problem represented by Fig. 4.

The statement

NEWTONIAN N

serves tn infrm the program that a reference frame called N is to be regarded as
Newtonia'i, that is, as one such that use of

F*, f+F;=O (r= 1...,p)

leads to physically correct results. Next, the lines
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VARIABLES U1,U2,U3,Q1,Q2,Q3

declare u, and q, (r = "3) as time-dependent variables to be employed to char-
acterize the motion and %.onfiguration of the rocket, whose mass and relevant inertia
p roperties are brought into the program with the statements

BODIES A
MASS A,M~
I-AASTAR=I*A3*A3

The afore ... antioned first level kinematic analysis is carried out simply by expressing

the velocity of the mass center of A in N as

VASTAR..N>=U1*A1>+U2*A2>

and the angular velocity of A in N as

W-A.N>=U3*A3>

Forces and torques are entered with the lines

ACTIONS F1,F2,TOR
FORCECASTAR ,F1*A1>+F2*A2>)
TORQUE(A ,TOR*A3>)

The rest is accomplished by typing

ZERO=FRo+FRSTAR()
UNCOUPLE C

This yields the dynamnical equations of motion by evoking the response

>>(20) ULS U2*U3 + FlM
(21) U2' = F2/M - U1*U3

>> (22) U31 = TOR/I

The four-bar linkage shown in Fig. 5 provides a second illustrative example. one
involving a loop. A, B, and C are massless rods of length LA, LB. and LC, respec-
tively; the revolute joints supporting A and C at P and 0 have vertical axes and

aesparated by a distance LD; PAB and PEG designate particles of mass M; and
QAQB, and QC are the angles between line 0 -P and A, B, and C, respectively.

Finally, a couple whose torque is indicated in Fig. 5 is applied to C. The objective
of the analysis to be undertaken is to produce motion simulations, that is, plots of,
say, QC as a function of time t.

As before, we begin with

NEWTONIAN N

M8

The est s acomplshedby tpin
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\.thousii the systemn under consideration possesses only one degree of freedom. it
e'xoeaieut (and permissible) to ihtroduce three generalized speeds. Therefore. we

contitie by entering

VARIABLES U1,U2,U3,QA,QB,QC
CONSTANTS LA,LB ,LC,LD
PARTICLES PAB,PBC
MASS PAB.4,PBC,M
POINTS PCO

The last line introduces a point named PCO, intended to be the point of C in contact
with 0.

Kinematical differential equations are created by typing

QA'=Ul
QB'=U2
QC' =U3

and the angles QA, QB, QC are brought into the analysis with lines

FRAMES A,B,C
SIMPROT(N,A,3,QA)
SIMPRUT(N,B,3 QB)
SIMPROT(N,C,3, QC)

which have the effect of creating direction cosine matrices relating -unit vectors vari-
ously fixed in A, B, and C to unit vectors N, (i = 1, 2,3) fixed in N. The Eirection
cosine matrices relating the unit vectors variously fixed in A. B, and C to each other
are generat-ed with the commands

A-B=A-N*N-.B

C-.A=C-N*N-A

The angular velocities of A. B, and C in N and the velocities of PAB, PBC, and
POC in N are entered as

W..A-.N>mUI*A3>
W-B-.N>=U2*B3>

W-.C-.N>=U3*C3>

and

V-.PAB-.N>=LA*U1*A2>
V-.PBC..N>=V-PAB-.N>-LB*U2*B2>
V-.PCO..N>=V-.PBC..N>-LC*U3*C2>

and two constraint equations are produced by noting that the velocity of POC in Nr
must vanish, which requirement is enforced with the lines
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! CONSTRAIN[1j=DOT(VPCON>NW>

CONSTRAIN 2 =DOT(V-PCON>,N2>)CONSTRAIN()

The last line causes tb iprogram to solve the constraint equations that is, to express! U2 and U3 in terms of U1.

The couple applied to C is brought into the program with lines that characterize
the torque of the couple, namely,

CONSTANTS TO,OMEGA
TORQUE(C,TO*SIN(OMEGA*T)*C3>)

and the equations of motion appear in response to the command ,

ZERO-FR() +FRSTAR)

Finaily, to cause AUTOLEV to write a FORTRAN program for the numer, cal solution
of the equations of motion, all one has to do is to type

CODE LINKAGE

To verify that the foregoing on-line operations can lead directly to tangible results,
one can use the FORTRAN program LINKAGE.FOR created by AUTOLEV to deter-
mine the response of the linkage to the oscillatory torque a pplied to C if, for example,
the system is initially at rest with QA = 90 deg, QB = 0, Q = 60 deg and LB = 0.3
m, LC = 0.5 m, w = 0.6 rad/s, and T = 0.8 Nm. Figure 6 is a plot of QC vs. t
based on numerical results obtained with LINKAGE.FOR.

6. On-Line Determination of Forces

Frequently the principal purpose of a dynamic analysis is to determine forces,
sometimes called constraint forces, that come into play during the motion of a me-
chanical system. The motion itself may be known a priori, or it may have to be
determined simultaneously with the unknown forces. In either case, it is disadvan-
tageous to emplo La range's equations when these provide the desired information
only with the aid of agrange multipliers, for this tends to complicate an analysis
unnecessarily. Similarly, the use of Newton-Euler methods can necessitate the intro-
duction and subsequent elimination of quantities not of interest in their own right. By
way of contrast, the equation of motion formulation methodology discussed in Sec. 5
and underlying the program AUTOLEV furnishes the means for the selective deter-
mination of scalar unknowns associated with unknown forces. Suppose, for example,
that it is desired not only to determine the motion of the linkage considered in the
previous section, but also to evaluate for each instant of such a motion the magnitude
of the force exerted on C by the bearingat point 0. Only minor modifications of the
earlier program are required to obtain the desired information. Specifically, following

elirpormACTIONS TOR
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the line

AUXACTIONS FI,F2

is added to introduce two scalars that will presently be used to characterize the force
in question. The lines dealing with constraint conditions are modified to read

AUXCONSTRAIN [l]DOT(VPCON>,Ni>)
AUXCONSTRAIN 12] -DOT(VPCON> ,N2>)
AUXCONSTRlN ()

and the force applied to C at 0 is accommodated with the statement

FORCE(PCO ,F1*NI>+F2*N2>)

A new FORTRAN program is created by executing the new AUTOLEV program,
and this brings one into position to generate the desired results. For instance, using
the same data as before, one obtains the the force vs. t plot shown in Fig. 7.

7. Conclusion

4 While computers have played a major role in the solution of various problems of
dynamics for many years, their use in the manner described in this paper is in its
infancy. Experience gained to date suggests that the new approach can be highly
effective not only in an industrial setting, but also in connection with the teaching of
the subject of dynamics. Because a good symbol manipulation program allows one
to carry out quickly and effortlessly many analytical tasks which, when performed
by hand. are both arduous and time-consuming, such a program can enable one to
devote more time and energy than would otherwise be available to the study of the
fundamental concepts underlying a given analysis. Additionally, it is a simple matter
to create a permanent, easily readable record of an on-line analysis, which can be of

I great value for purposes of checking and reviewing. It remains to be seen how widely
the new approach will be adopted.
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Formulation of Dynamical System Equations for
Parallel Multibody Simulation

A. Eichberger, C. Ffihrer and R. Schwertassek
DLR
German Aerospace Research Establishment
W-8031 Wessling, Germany

ABSTRACT. To exploit the benefits of parallel computer architec-
tures for multibody system simulation an interdisciplinary approach has
been pursued. combining knowledge of the three disciplines dynamics, nu-
merical mathematics and computer science. An analysis of the options
available for the formulation and numerical solution of the dynamical sy-
stem equations yielded a surprising result. A method, initially proposed
to solve the inverse problem of dynamics, is the best choice to generate
the system equations required for solving the simulation problem, when
relying on implicit integration routines. Such routines have the particular
advantage of handling stiff systems, too. The new O(N) residual forma-
lism, generating the system equations in a form required for implicit nu-

, merical integration has a high potential to benefit from parallel computer
architectures. Two strategies of medium and coarse grain parallelization
have been implemented on a Transputer network to obtain a package for
parallel multibody simulation. An analysis of the performa. -ce of this
package demonstrates for typical multibody simulation problems:

O The new code is five times faster than existing codes when implemen-
ted on a serial computer.

o An additional speed-up by the same order of magnitude is obtained,
when the code is implemented :n a Transputer network.

o The relative advantages of the two strategies of medium and coarse
grain parallelization. available with the code, depend on the problem.

In particular, the simulation program does not ask the user to distribute
work packages in the network. It takes care of such problems automati-

cally and presents itse!f in the same way as any serial code.

1 Formulation of the Problem

In summer 1987 most of the multibody dynamics community met at the JPL, Pasa-
dena, to discuss the needs and the open problems in multibody system simulation.
especially for space applications. P. W. Likins stated in his survey [16]: "Corn-
putational questions focused initially on the selection of subroutines for numerical
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,:jegration, matrix inversion, or eigensystem analysis. and lately have shifted to pre-
:,rocessors and postprocessors for user convenience. More fundamental issues are
:.ased by the potential of symbolic manipulation and parallel processing. both of

present the possibility c^ revolutionizing the field." ConceptL r symbolic im-
:,ementation have been pursued at various places, e.g [14, 21]. This paper presents

I -esults of our efforts to exploit the potential of parallel computer architectures for

multibody simulation. It has its roots in an analysis of the status ot knowledge at
the time, the above statement was made.

Basic methods for multibody system simulation are provided by the disciplines of
dynamics (the multibody formalisms), numerical mathematics (the solution techni-
ques) and computer science (the design of simulation codes) - see boxes in Fig. 1.

* In the mid-eighties the formalisms for the generation of multibody system equati-
ons and the numerical methods for solving ordinary differential equations had been
fully developed, but the interaction between the related areas of research was poor in
most of the groups working on the development of multibody codes. The so-called
O(N)-formalisms had been found at various places independently (23], yielding the
state space representation of the system dynamics in explicit form with a number
of operations, which grows linearly with the number N of system bodies. Solving
the equations generated in such a way with numerical integration routines at hand
was considered to be the most efficient approach to multibody system simuiation.
Other codes were based on the description of the system dynamics by a set of diffe-
rential equations in terms of redundant variables accompanied by a set of algebraic
constraint equations, i.e. the codes'generated and solved the Lagrangian equations
of type one. T'o improve the performance of such codes, the numerical solution of
differential-algebraic equations was studied by an increasing number of mathemati-
cians, generally without considering any special properties of the multibody system
equations. One of the attempts to initialize communication between dynamicists and
mathematicians was made by E. J. Haug when organizing the workshop on "Real-
Time Integration Methods for Mechanical System Simulation" in 1989 (8]. The prime
motivation for the meeting was the need to realize multibody real-time simulation
in such applications as general purpose car simulators. Additional aspects for re-
ducing multibody simulation time in vehicle dynamics, industrial applications have
been described in [12], e.g. for usage in hardware-in-the-loop-tests of ABS and ASC
(anti-slip-control). Design procedures for control systems in vehicles and spacecraft
also called for a significant reduction of simulation-time. During the specialists mee-
ting at the JPL in 1987 the simulation requirements in control system design were
described as follows [11]: "Problem solutions must be run in large numbers to arrive
at design decisions, and large systems must be studie-1. Computational speed there-
fore becomes the most important single consideration in code design." This necessity
was even more emphasized at a conference in the summer of 1989 [18].

Most of the implementations of multibody codes were on serial computers. To reduce
. computational costs the usage of parallel computation was discussed, but again with-
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out any interdisciplinary considerations. In [1] the most advanced option of those
days, the O(N)-formalism, was implemented on a parallel computer yielding littlereduction of computer-time. even for large multibody systems.

! , I Computer Sciencel

I

Dynamics 11- Numerics

Figure 1: Areas of research required in multibody system simulation.

In our contribution we pursue the idea of how to combine the methods available in
computer science, dynamics and numerical mathematics i.: an optimal way to obtain
the most efficient solution of the simulation problem - in other words, we want to
exploit the potential of an interdisciplinary approach to the problem as visualized by
the arrows in Fig. 1. The goal is a reduction of computer-time beyond the limits
described in the references mentioned above. This goal is achieved by aa appro-
priate tuning of multibody formalisms and numerical solution techniques resulting
in a formulation of the simulation problem, which has a high potential for parallel
computation. Its implementation on a network of Transputers yields reductions of
simulation-time considerably higher than those found in previous approaches.

2 Options for Solving the Problem

In view of Fig. 1 the methodologies available from the branches of science contributing
to multibody simulation are discussed now. Two forms of system equations may be
generated by methods available from the first one of the three disciplines, dynamics. 4

The two forms are the state space representation

l= Y11 (1a)
MR (ye, t) 11 = hR (y., ylu, t) , (1b)

and the descriptor form (Lagrangian equations of type one)

if -~rX1 = 0, (2a)
M(xi, t) i-G'(xi, t) A-h(xi, xt, t) = 0, (2b)

g(Xjt) = 0. (2c)
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Equations (1) are formulated in terms of the (independent) position- and velocity-

state-variables yj and ytu, whereas the coordinates.xt and the velocities xtt in (2) are
redundint. Therefore. generalized constraint forces A appear in (2b) and the d:ffe-
rential equations (2a, 2b) are accompanied by a set of algebraic constraint equations
(2c). Collecting coordinates yj and velocities yjt in the state vector y, the two sets
of equations (1) can be compacted into the explicit system of ordinary differential
equations (ODE)

=f (y,t) , (3)
after the reduced mass matrix MR has been inverted. Similarly, defining z to contain
xj, xtj and A, the set of equations (2) can be abbreviated as

F (x,i:. t) = 0, (4)

yielding an implicit system of differential-algebraic equations (DAE).

A survey of methodologies in multibody dynamics shows, that the generation of
the state space representation is straightforward only in the case of tree-configured
systems, when using relative variables to represent the system motion. An application
of the corresponding method to generate the equations of motion for systems with
closed kinematic chains yields a set of partially reduced system equations in terms of
redundant variables, i.e. a system representation of the general form (2). This is a first
option when dealing with gener"l multibody systems including closed loops. A second
choice is to use absolute variables. Then the descriptor form (2) of the equations of
motion can be obtained with very low effort. A third alternative is provided by

* the recursive O(N)-formulations. In case of tree-configured systems they yield the
explicit form (3) in terms of relative variables with a number of operations, which
grows linearly with the number N of system bodies. In case of systems with closed
loops a so-called semi-explicit form [24] in terms of redundant relative variables can
be obtained.

Numerical methods for solving the explicit equations are well developed. Such "ex-
plicit integration routine" for ODE require the evaluation of the right hand side of
(3)

f =f(ym,t,) (5)
given the state ym at time tin. These computations must, be provided based on the
multibody formalism. Unfortunately, explicit integrators break down in case of stiff
systems. But these appear quite often in multibody simulation, e.g. when dealing
with contact or control problems and with flexible bodies. This is why the usage of
explicit integrators and of the corresponding form of the system equations as provided
by the O(N)-formulations is excluded here.
For t:.,e numerical solution of the implicit equations (2) or (4) two approaches have
been proposed. One possibility, the "coordinate partitioning method" [7], corresponds
to a numerical reduction to the state space form (1). An improvement of this method
has been proposed in [15]. The second option, to be pursued here, is to use implicit
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{" mhuistep methods as implemented in the code DASSL [19]. Applications of the code
: solve mechanical svst:!m equations resulted in stability problems. They triggered
he development of the derivative ODASSL [4] of DASSL. which avoids such instabi-

lities. By contrast with explicit integration routines for ODE the implicit multistep
methods for solving the DAE (4) require the computation of the residual

Am = F(x,,t,) (6)

g%en approximations for the variables x, and the derivatives i,, together with time
t,.. The residual A,, is nonzero as long as the approximations do not satisfy (4).
Integration routines like ODASSL use values of 6, 34 0 to compute the solution of
(4), corresponding to A, = 0.
A simple consequence of the interaction between numerical mathematics and dyna-
mics in multibody simulation has been mentioned already: explicit integrators fail
for stiff systems, which suggests to avoid the explicit form of the system equations in
such cases. A more important aspect is related to the basic difference between the
information required from a multibody formalism by implicit and explicit integration
routines. In case of an explicit integration of ODE, the formalism must provide f,.
Because of this fact, all of the multibody formalisms presented previously headed
towards an efficient generation of the right hand side fm of the system equations.
By contrast, implicit integrators for DAE need the residual A. In view of (2) the
elements of A, can be interpreted as (generalized) forces, strictly speaking as those
forces, which must be added to the forces GTA + h to satisfy the equations of motion
for the given values X,,, and t,,. The c.-mputation of forces given the system
motion is known as the inverse problem of eynamics. It has been studied carefully
for applications in robotics and efficient formalisms to compute the unknown forces
- here the residuals - have been developed in this context [17].

In view of this interpretation there are three options to compute the residual A,, of
the partially reduced system equations in terms of relative variables:

1. Computation of the system matrices in (2) using any suitable formalism. This
1.yields a computational effort growing quadratically with the number N of system

bodies.
2. Application of the recursive O(N)-formalism to compute accelerations & corre-j sponding to the given values xm and tin. This yields the residual 'A =, - , ,

with a computational effort depending linearly on N. 4
3. Usage of a formalism for direct computation of Am as provided by the methods4

for solving the inverse problem of dynamics. Such a formulation - referred to
here as a "residual algorithm" - is also of O(N).

The computational effort required in the three cases has been analyzed as a function of
the number N of the system bodies. The result is summarized in Fig. 2. The diagram
shows the well known advantage of O(N)-formalisms (method 2) as compared to iclassical formulations (method 1). A new and more important result is an additional
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Figure2: Computational costs for generating the residual.

reduction of the computational effort - see Fig. 2, method 3 - achieved when using
* instead of the 0(N)-formalism the residual algorithm. which has been developed

in [2]. The different slopes of the two curves for the methods 2 and 3 correspond
to a factor 4.5 by which the residual algorithm is faster than the recursive 0(N)-
formulation (method 2).

To summarize, a combined consideration of dynamical and numerical aspects leads
:to the following conclusions: A generation of the explicit system equations (3) is

excluded together with an application of the corresponding numerical solution tech-
niques. Instead, the descriptor form (4) is used as a basis for simulation. Thus only
two of the three options available in dynamics survive: implicit representation of the
system motion in terms of absolute and relative variables. In both cases the resi-
dual dm must be generated for numerical integration. For the system equations in
terms of relative variables the residual is generated most efficiently with the residual
algorithm, as demonstrated by Fig. 2.

SConsidering the interactions with the last corner of the triangle from Fig. 1, computer
science, both, additional computational aspects resulting in additional options as
t I well as a reduction of the options already available are obtained. Heading for an
implementation on a parallel computer architecture the potential for parallelization

must be explored. The computations required for multibody system simulation can
be parallelized on three levels:

1. One may consider to parallelize basic mathematical operations, primarily matrix
operations for solving problems of linear algebra, required to generate and solve

siebthe implicit system equations. This is what is called a parallelization on a "fine
- grain'level".

l2. On a "medium grain level" the residual am may be generated by computing
those contributions to A in parallel, which result from the various elements of
the multibody system (bodies, joints, etc.). [2].

3. Parallelism on a "coarse grain evel"t is obtained following another strategy. Re-
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~peatedly calling the residual algorithm one obtains the Jacobian of F. which is

needed by the impiicit integration scheme. The calls are independent of each
Utlier and can be organized in parallel.

The basic difference between a parallelization on the medium and the coarse grain
level is as follows: on the medium grain level the residual is calculated in parallel
combined with a serial computation of the Jacobian. Vice versa, on the coarse grain
level a serial implementation of the residual algorithm is used and the Jacobian is! computed in parallel.

In addition to these alternatives we also must consider the still remaining option of
computing based on equations (2) in terms of absolute variables. The generation
of A.. is so simple in this latter case that its parallelization results in no significant
benefits. The remaining part of the simulation problem, the solution of the system
equations in terms of absolute variables based on the computation of A,,, Iwhich
is the timeconsuming part in this approach) involves linear algebra computations
only. Numerical experience teaches that a parallelization of linear algebra operations
does not pay off for orders of matrices typical in multibody system simulation j3].
This excludes two options, the usage of absolute variables at all and a fine grain
parallelization of a simulation based on the partially reduced system equations in
terms of relative variables. The two other candidates of medium and coarse grain

" -parallelization, as mentioned above, remain competitive.f In summary, interdisciplinary considerations yield the result that implicit integration
of the partially reduced system equations in trms of relative variables is the candidate
for a parallelization of multibody system simulation. A numerical solution of the
system equations requires the computation of the residual zl,,. The implementation
of the equations to compute the residual may be pursued following the two strategies
of medium and coarse grain parallelization. The implicit formulation of the problem
results in one of the advantages of the approach, its capability to deal with stiff
system equations.

3 Parallel Implementation

J The two alternatives of medium and coarse grain parallelization have been identified
as candidates for the implementation of the multibody system equations as required
for implicit numerical integration. Within the process of parallelization identical work
packages are formulated, which can be treated simultaneously for both of the alter-
natives [2]. Having clarified such details depending on the -tructure of the equations
of motion, two major points, a software- and a hardware--problem, require further
consideration: The concept for parallelization. i.e. the software needed to distribute
the work packages on a given topology of computing nodes' must be defined, and
this topology of computing nodes, resulting in the best suited hardware architecture

'A computing node as tsed in this contex. is a more general term for a processor or a collectioni of procemors.
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for solving the simulation problem. must be selected. Both of these problems %. ii 'e
discussed in more detail now.

The mnost important criterion for the selection of the concept for parallelization is the
development of a "user-friendly" simulation code. Shifting any of those problen. to
the user, which can be handled by the computer. musL be avoided. In particular.

@ a user should not be occupied .vith the question of how to distribute work pa-,;.-
ages,

* the topology of the multiprocesscr vetwork should be independent of the multi.
body system topology,

* the problem of load balzading -houle be sol" - utcmatically, i.e. a user should
not be asked to take cxe of Kxw to dis~r;b;-e t:' .computational load within the
network in a uniform way,

9 adding computing nodes to the netl. -" s,.. resalt in a reduction of simulation
t ~tme wiibot o additional prgramrning c'fort.

''2
\K "' °: * "<'*

• "" ':'"" '" '~k '- ,-

- ,.wor,,

Figure 3" Organization of the distribution of work load in a computational network
by means of the 'I..iing concept.

The farming concept, piopos.d in (10, meets all of the above mentioned require-
ments. As visualized in Fig. 3, the computing nodes are subdivided into the two
groups of one single "farmer" and an arbitrary number of "workers". Whenever the
f.-tr-er recei.ies an order, lie separates it into an appropriate number of identical work
packages (e.g. the computation of a complete Jacobian into the computations of its
individual columns). Then the farmer sends these work packages into the farm, where
the workers solve three problems: distribution of work packages, computation, i.e.
exccution of work packages and delivery of results back to the farmer. The farmer
keeps control of the rei-nber of outgoing work packages and incoming result packages.
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This avoids an overload of the farm and ensures that ilie number of work packages is
decoupled from the number of workers axailabe. The distribution of work packages
by the workers themselves guarantees both. a uniform distribution of the work load
and the possibility to deal with an arbitrary processor topology. In particular. in
case of multibody simulation the latter property avoids adapting the topology of the
processor network to the topology of the multibody system. The parallelized code
presents itself to the user in the same way as any conventional serial code running on
a single processor.

Processor Disk IeA Bus

i Processor Processoryte u

RA , 3_P 2Z73=
* f Distributed Memory System Shored Memory System

Figure 4: Different structures of multiprocessor systems.

Some hints dealing with the second point mentioned above, the choice of the hardware
architecture for multibody simulation, are summarized now [2]. As in case of the
first problem, the criteria for selecting a parallel computer architecture are collected
first: The architecture should be well suited for applying the farming concept, it
should not result in a conceptual bottleneck for communication and it should be easy

*to expand. Two groups of parallel computer architectures have been proposed, the
shared memory systems and the distributed memory systems as represented in Fig. 4.
In the first case the processors share one common memory and functions for network-
(disc- and bus-) control. The interconnection of the processors, of the memory and
of the control units by a single bus yields a limited communication bandwidth and
results in a communication bottleneck when increasing the number of processors. By
contrast, in a distributed memory system each single processor ha its own memory
and its own communication supports. The processors are interconnected to each
other directly. As a result the communication bandwidth grows with the number of
processors and the bottleneck resulting from communication by means of a single bus
disappears.
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Figure 5: Relative performance of multiprocessor systems.
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Figure 6: Tran-,puter architecture and its iepresentation by a symbol.

A comparison of the computational performance of the two systems is shown in Fig.
5. As long as the number of processors is low, shared memory systems are slightly
superior as compared to distributed memory systems, but when the number of proces-
sors has grown beyond a certain limit, the advantages of distributed memory systems

become more and more pronounced. The remson for this apparent disadvantage of
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shared memory systems lies in their conceptual bottleneck for communication by
means of the system bus. By contrast. dist~ibuted memory systems avoid such a
bottleneck, they can be expanded easily and they are well suited for applying the far-
ming concept: one processor can be assigned to be the farmer and the others become
the workers, all of them being interconnected directly with each other. Thus. in view
of our criteria, distributed memory systems are well suited for multibody simulation.

The Transputer shown in Fig. 6 can be used as a building block to generate large dis-
tributed memory systems. The Transputer (the word is a combination of transmitter
and computer) has been developed by INMOS [5). It was the first microprocessor
combining processors (CPU, FPU), memory (EMI, RAM), and communication sup-
port (Links) on one single chip.

Keyboard Disc Screen

F
fi

w w
tW

Figure 7: Host computer together with a Transputer network.

$ Because of the links Transputers can be interconnected easily in an arbitrary way to
generate a network - see Fig. 7. When the network is linked to a host computer (per-
sonal computer or workstation) to provide such facilities as keyboard, disc-memory 4
and screen, one obtains a p-. -erful distributed memory multiprocessor system. In
view of the farming concept the Transputer interconnected directly to the host com-
puter can be identified with the farmer and the others become the workers. This is
the parallel computer architecture to be used here for implementing the two alterna-
tives of medium and coarse grain parallelization of multibody simulation as outlined
in Sect. 2.
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4 Architecture and Capabilities of the Simulation Package

lhree computer codes have been developed to test the computational efficiency of the
methods described heretofore. A serial code SERSIM has been based on the residuum
algorithm described in Sect. 2. It serves as a standard to measure the speed-up2

* gained by parallelization and it has been used as well to test all of the serial parts
in the parallel codes. Two of them are available, called PARSIMI and PARSIM.2.
In PARSIM.1 medium grain parallelization is used to compute the residual, whereas
PARSIM.2 follows the strategy of coarse grain parallelization as discuss-d at the
end of Sect. 2. The entire simulation package including the three codes SERSIM,
PARSIM.1 and PARSIM..2 for generating the residuals as required for numerical
integration makes the following options available:

e generation of the equations of motion,
* determination J . i a configurations,
* computation of a ,e of .cnsist, initial conditions,

* 1 kinematic ani",
a simulation, in(.. -an; a simple on-line animation.

, In!outJ

BaATCHGEN

I ' .; I
A'nation

E M

Figure 8: Structure of the simulation package.

A global representation of the structure of the package is given in Fig. 8. A main
program BATCHGEN is used for dialog-oriented input of the system data (e.g. for
the Iltis-vehicle shown in the diagram) and additional parameters for computatio-
nal control. The program generates the system data in forms required for further

2The speed-up is defined as the ratio of the computer-time for evaluation of an expresslon
required by a number of processors greater than one as compared to the time needed by a single
processor.
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computation. Together with initial values and control parameters the system data
are used to start the analysis part, which produces the results for further' evaluation
together with an on-line animation. The analysis part yields the static equilibrium
configuration, consistent initial conditions and the system motion for a given interval
of time, using any of the three codes SRSIM, PARSIMI and PARSIM-2. With
the third part of the package time histories can be plotted using the PIT2-code
(available at DLR) or any standard features provided by MATHEMATICA.

5 Results

Two typical applications of multibody system simulation - the analysis of the motions
of an off-road vehicle and of a multiple body pendulum - are discussed now with
regard to

. verification of the code,
9 reduction of computer-time due to the new O(N)-residual algorithm and its
K parallel implementation,
* relative performance of medium and coarse grain parallelization.

' '!Ti oRod

' Car Body

I Figure 9: Multibody model of an off-road vehicle.

The first example is the Iltis off-road vehicle depicted in the "Real System"-box of
Fig. 8. Its multibody model, represented in Fig. 9, has been used as a benchmark

Aproblem for multibody simulation codes [13]. The model shows the car body with
four identical McPherson suspensions and includes complex force laws for the leaf
springs and the tires.

S4...,
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1ltis Ramp-to-Step Steer
-- pPR~lU_2- v9OCly 50m /,
- - •P ARsJu.2 - Vioty 2m/s

0.2 - PARSM2 - Volooty tOm/s
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0.0 0.5 1.0 1.5 2.0 2.5 '.0 3.5 4.0 45 5.0Simulotion Time Is]

Figure 10: Yaw rate of the car body of the Iltis off-road vehicle.

Ilts Romp-to-Step Steer
PARSU2 - Vlocfty 3m/0

- - PARSJM.2 - Velocty 2m/s
0.5 PARSIM2 - Velociy 1Om/s

0 - .0 , - - - - - -

.2
2 -2.0-
2

• o 4

0.0 0.5 1.0 1.5 2.0 2. 3.0 3.5 4.0 4.5 5.0

Simulation Time Is]

I Figure 11: Lateral acceleration of the car body of the Iltis off-road vehicle.
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Motions of the vehicle are excited by a "Ramp-to-Step Steer" maneuver due to a
displacement of the rack given by

S0.4mm/s*t 0.Os<t<0.5 s. pt) [, 2.0tr mm 0.5S < t :5.0s

1 91 It commands a steering motion of the front wheels of the vehicle resulting in a change
o: the direction of travel from straight track to a (circular) curve. A detailed descrip-
tion of the model may be found in [221 - here it is sufficient to know that this
multibody system model has 10 bodies, 18 joints and 8 kinematically closed loops.
In our approach the system motion is represented by a set of 52 differential-algebraic
equations. Motions due to the rack displacement have been simulated for the three
initial velocities of 10, 20 and 30 m/s of the vehicle. Typical examples of simulation
results are given in Figs. 10 and 11. The diagram in Fig. 10 shows the time history
of the yaw rate of the car body and the one in Fig. 11 its lateral acceleration. The
plots demonstrate that the vehicle travels along a circle after some transients due
to the maneuver have been damped out: Both, the lateral acceleration and the yaw
rate become constant. The stationary values of the yaw rates of the vehicle trave-
ling with 20 and 30 m/s are nearly identical - see Fig. 10. This is explained by the
fact that the vehicle runs along circles having different radii in the two cases. The
results are in good correspondence with those obtained using the SIMPACK- and
the MEDYNA-code described in [20] and [25]. The above results verify the new
code, but its relative performance with respect to existing serial codes remains an
open question. Two options, medium and coarse grain parallelization, are available
within the simulation package. To selcct the one, which is best suited for simulating
the problem under consideration, the diagram shown in Fig. 12 has been created. It
shows the speed-up obtained for evaluating both, the residual A. and the Jacobian
of F when increasing the number of processors. The diagram shows clearly that a
parallelization of the computation of the Jacobian results in a far better speed-up
than the parallelization of the generation of the residual. For the simulation of the
Iltis vehicle motions this suggests to use the coarse grain strategy for parallelization,

4 i.e. the PARSIM_2 option of the simulation package.

Applying SERSIM and PARSIM.2 we now ask the following questions:

1. How does the parallelized code compare with the performance of the MEDYNA-
code, which has been developed with special attention to vehicle dynamics ap-
plications? Such a comparison is of particular interest, because MEDYNA uses "

" a system representation, in which the kinematics are linearized, resulting in con- A

4 siderable computational savings.

the SIMPACK-code, which uses the "classical" recursive 0(N)-formulation for
! 2. How does the new code, based on the new o(N) residual algorithm compare to

the generation of the system equations?
3. What are the benefits of using several processors instead of one single processor

only? This question can be answered by comparing the performance of PAR-
SIM..2 and SERSIM. -

%'!
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Medium Grain Parallelizotion
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1 2 4 8

Number Of
Processors

Figure 12: Speed-up in case of medium and fine grain parallelization.

Answers to the three questions are summarized in Table 1. It gives the CPU-times

for running the same problem with the codes mentioned in the first column and with
the numbers of processors shown in column 3. The CPU-times given in column 4 are
normalized such that the time required by the SERSIM-code is 1. In all of the cases
the same (implicit) integration routine ODASSL has been used, excluding MEDYNA.
This code generates the explicit form of the state space representation and relies on
the explicit integration routine DEABM [6]. The facts demonstrated by the table are
as follows:

s The SERSIM-code, generating the nonlinear system equations, is nearly as fast
as the MEDYNA-code, in which the kinematics have been linearized.

9 The new O(N) residual algorithm is much faster than the "classical" recursive
O(N)- formulation used in the SIMPACK-code. The efficiency of the two ap-
proaches had been compared in Sect. 2. The factor 4.5 given in the table justifies
the expectations suggested by Fig. 2.

. The simulation time is reduced considerably when using more than one processor.
The speed-up is not as high as one might expect from Fig. 12. This is understood (
easily, when realizing that the Jacobian is re-evaluated in general only for 10 %
of the integration steps.

- The combination of the new O(N) residual algorithm and coarse grain paralle- i -

lization yields a reduction of computer-time of an order of magnitude when com-
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pared with a serial implementation of the "classical" recursive O(N)-formulation
(CPU-time 4.5 against 0.46).

*"code integrator processors CPU-time
SIMPACK ODASSL (:mpl.) 1 4.50

* MEDYNA DEABM (expl.) 1 0.91
SERSIM ODASSL (impl.) 1 1.00

PARSIM_2 ODASSL (impl.) 2 0.71
PARSIM.2 ODASSL (impl.) 4 0.58

.PARSIM.2 ODASSL (impl.) 8 0.46
impl. = implicit method expi. = explicit method

Table 1: Computer-times required to simulate motions of the off-road vehicle.

Finally, it may be worth mentioning the real - not the relative - computer times.
One single Transputer yields approximately the same computer-times as an apollo-
Workstation DN 5500. The normalized time 1 in the table corresponds to a CPU-time
of 18.3 s on the apollo, required to simulate the 5 s of the vehicle motion shown in
the Figs. 10 and 11.

Gravity

ii , -

1 2 21 22

Figure 13: Multiple body pendulum.

The second example, a 22-body pendulum as shown in Fig. 13, demonstrates that
the optimal strategy for parallelization depends on the problem. Multiple pendulum
systems have been used as models for the simulation of the motions of cables [9]. In
particular, the laws for the forces between the system bodies become quite complica-
ted in such applications. The diagrams in Fig. 14 show the relative computer-times
required for the simulation of the motions of the system using various codes and an
increasing number of processors. Again the computer-time has been normalized to i - "
obtain the value 1 in the case of a simulation by the SERSIM-code.

The pendulum model has a tree configuration, in fact it is a simple chain. In such ,. -

cases the SIMPACK-code generates the explicit form (3) of the system equations.
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Figure 14: Computer-times required for the simulation of the multiple body pendu-
lum.

Using the explicit integration routine DEABM one obtains a normalized simulation
*time of 4.46 as shown in Fig. 14, compared to I required by SE.RSIM when using the

implicit integrator DASSL. The latter time is reduced as shown by the diagrams when
using more than one processor and the two parallel codes PARSIMI and PARSIM.2.
The example demonstrates that it is more advantageous to apply PARSIMI in this
case, i.e. to follow the strategy of medium grain parallelization. With this concept
and with 8 processors one obtains a reduction of simulation time by a faccor of 23 with
respect to the point 4.46 marked in the diagram for the "classical" O(N)-formulation
implemented on a serial computer. -I

6 Conclusion

To exploit the benefits of parallel computer architectures for multibody system si- 4
mulation an interdisciplinary approach has been pursued, combining knowledge of
the three disciplines dynamics, numerical mathematics and computer science. An

analysis of the options available yielded a surprising result. A method, initially pro-
£ posed to solve the inverse problem of dynamics, is the best choice to generate the

system equations required for solving the simulation problem, when relying on impli-
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cit integration routines. Such routines have the particular advantage of handling stiff
systems, too. Th, new O(N) residual formalism, generating the system equations
in a form required for implicit numerical integration, has a high potential to benefitI from parallel computer architectures. Two strategies of medium and coarse grain

I parallelization have been implemented on a Transputer network to obtain a package
for parallel multibody simulation. An analysis of the performance of this package
demonstrates for typical multibody simulation problems:

# The new code is five times faster than existing codes when implemented on a
serial computer.

* An additional speed-up by the same order of magnitude is obtained, when the
code is implem-nted on a Transputer network.

* The relative advantages of the two strategies of medium and coarse grain paral-
lelization, available with the code. depend on the problem.

In particular, the simulation program does not ask the user to distribute work pack-
ages in the network. The implemented farming concept takes care of such problemsautomatically and the program presents itself in the same way as any serial code.

The serial implementation of the new code is supplementary to the methous available
in SIMPACK. It will be added to this multibody simulation package to increase its
computational performance.
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DYNAMICS OF MULTIBODY SYSTEMS WITH MINIMAL COORDINATES

M. HILLER
Fachgebiet Mechatronik
Universitit Duisburg
Lotharstmse I
W-4100 Duisburg I
e-mail. hillerbechatronik .uni-duisburg do

ABSTRACT. Discussed in this contribution is a particular approach for tackling the problem of for-
mulating the equations of motion of minimal order for complex mechanical systems. The obective is
to arrive at a system of pure differential equations, which is robust and for which efficient integration
techniques exist. This ie achieved by a special treatment of the kinematics, which are formulated
by consideration of closed-form solutions for the subsystems where this is possible and reducing the
generation of dynamical equations to a repetitive evaluation of the kinematics. Discussed in the
paper are the necessary techniques for solving the arising subproblems, from methods for finding
dosed-form solutions in single- and multi-loop systems to the incorporation of non-holonomic con-
straints. Also, some remarks are given concerning the implementation of the methods based on
modern programming paradigms, such as object-oriented programming and symboli 94 formula ma-' nipulation. The key concepts are illustrated by several examples, among which are actual research
objects and applier'ions in cooperation with industry.

1. Introduction

The dynamics of multibody system dynamics is a field of research since now more
then 30 years, and, since its beginnings, several outstanding approaches have emerged
which, in part, have reached commercial maturity. Papers like the one of Hooker and
Margulies 1965 or Roberson and Wittenburg 1968 are typical examples of early pub.
lications in this field, while names such as IMP (Sheth and Uicker Jr. 1972), DAMN
(Chace and Smith 1971), ADAMS (Orlandea et al. 1979), DADS (Wehage and Haug
1982), NEWEUL (Kreuzer 1979), COMPAMM (Garcia de Jal6n et al. 1986), MESA
VERDE (Wittenburg and Wolz 1985), MECANO (Geradin and Cardona 1989) and
SIMPACK (Rulka 1990) stand for "turn-key" program packages endowed with easy-
to-use graphical interfaces and universal schemes for automatic equat;on generation
by means of which the engineer is freed from the burden of establishing the model
equations of the system. The German Research Council (DFG) has even just finished
a nationwide five-year research project devoted to dynamics of multibody systems,
gathering some of the best contemporary multibody formalisms in a new general 4
purpose program (Schiehlen 1993). Why thus a further approach?

The reason for t'ie developing the present approach lies in the fact that, in in-
dustry, for complex systems and corresponding applications still a lot of modelling is
performed by hand, because engineers find that (a) such programs can be "tuned"

2' II 119



to run fast~r, including hardware-in-the-loop applications, (b) hand-tailored program
modules implementing non-standard solution techniques can be more easily incor-
porated, and (c) these programs are better understood. As it turns out, for many
practical systems huge parts of the underlying equations can be solved either in
closed form or in some simplifying manner, and incorporation of these solutions into
the general procedure is (today) only possible with the help of human intelligence.

The objective of this paper is to show some techniques and systematics for helping
the designer to establish where closed form solutions may arise in the system, and
how to incorporate them into the dynamics-generation procedure. This knowledge
can be used for establishing the equations of motion of minimal order for quite gen-
eral systems, and thus to incorporate very efficieL' computer-models of mechanical
systems into more sophisticated programming environments. It is also intended to
present the main results of the work done by the author and his co-workers in the
recent years.

The rest of the paper is organized as follows: After giving an overview of the basic
steps of the overall procedure based on the example of the modelling of the dynamics
of an upper-class passenger car in Section 2, the idea of reducing the dynamics to
a repetitive evaluation of the kinematics is presented in Section 3. At the heart of
the approach is the problem of appropriately solving the kinematics of the single
loop, which is discussed in Section 4. Here, the systematic of the "Characteristic
Pair of Joints" for establishing appropriate closure conditions is elaborated, and a
short overview of a method for determination of the polynomial of minimal order
for the general case is given. Also, a scheme for the automatic determination of
closed-form solutions, where possible, is described. Section 5 addresses the problem
of the dissection of a general multi-loop system into modules which can be used for

incorporating the results of the previous section into the general-case problem. This
is achieved by regarding the independent multibody loops as individual "kinematical
transformers' which are then coupled together by linear equations to make up the
original general multilooped system. Section 6 covers the treatment of non-holonomic
constraints, showing 2w an exa.rIpie of a complex application a combined wheeled and
legged vehicle. Finally, in Section 7 some remarks concerning implementation-specific
issues are given.

2. Basic Modelling Steps in the Minimal Coordinate Approach

Various techniques exist for transforming a real technical system into a mechanical
model depending on the kind of investigation to be carried out. As an example,
consider the simulation oi Ul~e dynamics of a passenger car with active components
such as anti-lock-systems (ABS) and drive-slide-control (ASR) (see Fig. I and Fig. 2).
Here, eigenfrequencies of the system up to 25 Hz have to be taken into account, which
is accomplished by representing the complete vehicle as a multibody system including
the full nonlinear kinematics of the wheel suspensions, the suspension of the engine
together with the powertrain, as well as dynamic tire models. In addition, elasticities
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at particular hinges have to be taken into account.

4 4

Figure 1: Upper-class passenger car.

6i I
1$

I C

Figure 2: Model of the passenger car. w

The corresponding multibody system is characterized by a complex topology with
many kinematical loops (see Fig. 3). To obtain the dynamical equations of motion
in minimal coordinates, the global kinematics of the system, describing the motion
of all bodies in the system with respect to the inertial frame, is required. For this
purpose, the followiing modelling steps are introduced: r e r

1. Decomposition of the global kinematics into relative and absolute kinematics by
introducing joint coordinates. Thus the originally large set of implicit equations
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Figure 3: Topology of the passenger car.

in absolute coordinates is separated into a small set of implicit or partly implicit
equations governing the relative kinematics and a set of explicit equations for
the absolute kinematics (see Section 3).

2. Decomposition of the equations for the relative kinematics into components cor-
responding to individual kinematical loops or subsystems of several kinematical
loops. These components are then treated as "kinematical transformers" (see
Sections 4, 5 and 6).

3. Determination of closed-form solutions for individual components, if possible.
For example, the five kinematical loops contained in the front-axle of the ve-
hicle shown in Fig. 3 can be explicitly solved as individual loops and also as a
complete subsystem (see Sections 4, 5 and 6). 4

4. Assembly of the solution of the individual components to obtain the global kine-I matics of the complete multibody system (see Fig. 4). The use of object-oriented
programming techniques permits this assembly process to be implemented in a

simple and intuitive manner (see Section 7).

5. Generation of the overall dynamical equations.
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: Figure 4: Assembly of the components of the passenger cars.

I 3. Equations of motion for complex multibody systems with minimal
•i{ coordinates

3.1. DYNAMICS

The equations of motion for general multibody systems can be stated starting from
D'ALEMBERT's principle. This principle applied to a scleronomic, holonomic or non-
holonomic multibody system consisting of ns rigid bodies reads (see also Hiller and
Kecskemdthy 1989)

(,as, - .i + (s, j, +wi x Os, wi- .). 60i =0 (1)(i=1

where, for body Bi,
m, - mass,
• . tensor of mass-inertia,.
fi - resultant vector of applied forces,
_"rs, - resultant vector of applied torques at center of gravity,
as, =ii- vector of acceleration of center of gravity,
wi - vector of angular velocity, r

\; - -& - vector of angular acceleration, .[;
It 6 s8i -vector of virtual displacement of center of gravity,

60 - vector of virtual rotation.
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All vectors appearing in Eq. (1) are tensors of valence one, thus Eq. (1) is stated
in a component-independent form. Note that the constraint forces do not appear
in Eq. (1) because the virtual displacements bai and 6b are assumed to be corn-
patible with all the constraints imposed on the system. For the general case where I
the virtual displacements 6s. and bi are not independent, one introduces f inde-
pendent generalized coordinates q = [q19... , q]T with corresponding independent
virtual displacements 61 = [8q,... , 8q]T, f being the number of degrees of freedom
of the multibody system. The dependent virtual displacemento are related to the in-
dependent virtual displacements by linear, homogeneous transformations which can
be obtained directly from the velocity transformations

vi=J., , = Jw, (2)

by substituting velocities with virtual displacements:

, , = J',j q , 6b4 = JW 62. (3)

The 3 x f transformation matrices J5, and Jwi are still to be determined.
The relationships between the dependent and independent accelerations, are de-

rivedfrom Eq. (2) as

aj-J.j+jsii , £ =Jw,&l+ .i. (4)

Insertion of these transformations into D'ALEMBERT's principle yields, due to the in-
dependency of virtual displacements bql,.. . 6qf, the equations of motion of minimal
order

M. + b =_q, (5)

where the f x f generalized mass-matrix M, the f x I matrix of generalized centrifugal
and coriolis forces b and the f x 1 matrix of generalized applied forces Q read,
respectively,

no
"() = J[miJJT.J'i +JT (Ji] , (6)

t| no

, = +[J, f, +JTi (8)

Once the transformation matrices J, and Jw are established, the problem of stat- j " -
£ ing the equations of motion of minimal order is solved. The difficulty for complex

multibody systems is that the transformations Eq. (2) to Eq. (4) are mostly hard to
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obtain. Although the position coordinates of the bodies are known to be analytic
functions of the generalized coordinates

= qi i=1,2, • ns (9)
R,= .i(q,...,q 1 ) " '

where i denotes the tensor measuring the rotation of body Bi with respect to the
inertial frame, these functions are generally not known explicitly. Thus defining Ji
and Jwi by analytical differentiation, as in

.,* (10)

leads to very long formulas which cannot be applied to complex multibody systems.
For this reason, most of the present methods avoid this kind of formulation by using
LAGRANGE-multipliers. This is equivalent to "transfering" some - or all - of the
constraints from the kinematics to the dynamics. A full solution of the kinematics,
from which the quantities needed for the transformations in Eqs. (3) and (4) can
be determined easily is described in Hiller et al. 1986. In this paper, this method
is applied to produce, using kinematical differentials, suitable expressions for the
transformations in Eqs. (2) and (4).

Suppose that an effective formulation of the global kinematics exists for a given
multibody system, which provides the relationships between position, velocity and

acceleration of all bodies for given values of the generalized coordinates and their
time derivatives, as shown in Fig. 5. Obviously, these relationships can be evaluated

GLOBAL --- , Ri
KINEMATICS i = ...,n

Figure 5: Global Kinematics

for any set of values of the generalized velocities .1,..., q,. In particular, evaluating

the kinematics for a fixed position and a special set of generalized velocities

.. U() = 1 ifi=j fr~,.,,(1
q = 0 otherwise

yields pseudo-velocities ij) and i), which, compared with Eq. (2), give just the
j-th column of the transformation matrices Joi and J, respectively. Similarly,
evaluation of the kinematics for fixed position and fixed velocity, but with the special
generalized accelerations

= , (12)
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yields tand i which, compared with Eq. (4), equal the

h terms Ji j and Jw, 4, respectively.
With these quantities, the differential relationships of Eq. (3) and Eq. (4) can be

a, = s ; ", + = ,

1 "(13)

j=1 J=1

and the coefficients for the matrices of the equations of motion of minimal order read:

= [) + C,'j). *ei, ll ]

= i f(). ( +D,,) ] . (14)
= E~, ., +I

" iIt should be noted that by Eq. (14) the problem of stating the equations of motion
of minimal order for arbitrary multibody systems has been reduced to a purely kine-
matical problem. Moreover, the coefficients of the equations of motion are written
in terms of "physical" quantities, i.e. tensors, which are independent to coordinate
transformations. Thus, one is still free to choose an appropriate coordinate system
for the evaluation of each individual term. Together with the process of determining
the partial derivatives by a simple re-evaluation of the kinematics - denominated
kinematical differentials - Eq. (14) gives a very easy-to-implement approach for stat-
ing the equations of motion of minimal order. The key to the effectiveness of this
method is a particular formulation of the kinematics, which will be discussed next.

3.2. KINEMATICS

For a multibody system with the independent coordinates q, position, velocity and
acceleration of all bodies have to be expressed as a function of q, ,4. For systems
with complex topology, such as those containing kinematical loops, it is suitable to
separate the calculation into the two steps (see Fig. 6)

* relative kinematics, where all dependent joint coordinates 6 and its derivatives :
are expressed as a function of q, 4,.

4* absolute kinematics, in which, by a forward kinematics procedure, all kinemat-

.. j , ical .quantities si, R,, vi, wi, a, d for all bodies are calculated as a function of

9313# 16.
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Figure 6: Kinematics of multibody systems with closed loops.

Both steps are combined to obtain the global kinematics described in the preceding
section (see Fig. 5).

In the following, several particular aspects which arise in multibody systems with
closed kinematical loops will be discussed. Consider a spatial multibody system,
consisting of ng moving rigid bodies (i.e. without counting the inertial frame), and
nG elementary joints, i.e. revolute or prismatic joints with a single degree -)f freedom.

* According to Eq. (9), the position and orientation of all bodies can be stated as
* nonlinear analytic functions of f = 6 ne - 5 nG generalized coordinates q1,..., qJ. An

alternative, more compact representation of Eq. (9) is

. = () (15)
i. : i°

where p. is a 6-tuple holding three translational and three rotational parameters, or
a (6 + e)-tuple, e being the number of redundant rotational parameters. For example

P. = [zi, yiqzi; i, Oil i]T (16)

with coordinates xi,yizi for the reference point of body i and EULER-angles 0i,8i,;i"
(or another set of rotational parameters) for its orientation. The np = 6 no position
coordinates of all bodies can be put together in an array

pT,.. PT T (17)

For a general multiloop system, the functions in Eq. (15) will not be known a priori
in closed form. instead, they are defined implicitly by a system of 6 ne nonlinear
equations

~Yi(E;q) =  0 ; i = 1 ... ,6n st, (18)

which consist of the constraints at the joints, as well as additional equations defin-
ing the generalized coordinates in terms of the position parameters of the bodies.
This form represents a large "sparse" system of relatively simple equations. An al-
ternative formulation of Eq. (18) is obtained after introducing the joint coordinates

= [/1,,-.. ,t] T as auxiliary variables and then splitting Eq. (18) into two subsys-
tems:

% p = p(). (19) .

g,(0I;) = 0 :z=1..,n3. (20)

127

___________________________ ______________ Ay

"A Py4



__--____I___-_-__IIIIIIII_ II__I| _ili II i~ - - I il ea l -rni. I

The first subsystem represents the forward kinematics, i.e. the process by which one
obtains the absolute motion of the bodies for known relative motion at the joints.
This is a task which can always be stated recursively in closed form and will not be
discussed here. The second subsystem, which defines the functions 8(j) implicitly,
represents the relative kinematics and consists of a reduced system of constraint equa-
tions, together with f equations describing the choice of the generalized coordinates
(Fig. 6). Note that this choice can be formulated as simple one-one correspondences
to particular joint coordinates, resulting in f of the equations out of Eq. (20) being
mostly trivial. The remaining r = no - f nonlinear equations represent the "core"
of the reduced system of constraint equations.

In recent years, several methods to state the constraint equations of the "core" of
the reduced system have been developed. Among others, one approach is based on
the following concepts:

* The characteristic pair of joints to state the six constraint equations of a single
multibody loop in a mostly recursive form (Hiller and Woernle 1988). If a fully
recursive formulation is possible, this solution can be found automatically, as
shown in Kecskemithy and Hiller 1992.

* The concepts of kinematical transformer and block diagram. Here, the indi-
9-" vidual kinematical loop is treated as a transmission element, and a complex

multibody system consisting of many closed loops - usually interconnected by
linear equations in the joint variables - is represented as a block diagram. This
can also be regarded as an oriented graph which visualizes the kinematical flow
in the system (Hiller and Kecskemithy 1989).

* The concept of the kinematical differentials for an efficient evaluation of the
time derivatives required for the kinematics as well as for the dynamics. This
has already been described in the previous section.

4. Kinematics of single multibody loops

4.1. STATING LOOP CLOSURE CONDITIONS

Considering a single multibody loop L, consisting of nB (L.) bodies and no (L,)
no (Li) elementary joints, one introduces the no (L,) = no (Li) (relative) joint coor-
dinates j (L,) = [f, ... , -]T as auxiliary variables. For these coordinates there
exist, in the general case, six independent constraint equations, which arise from the
closure conditions of the loop. Special configurations, where the equations become
linearly dependent, shall not be considered here. It is then always possible to define

six joint coordinates as functions of the other f (Li) = no (Li) -6 independent joint
coordinates. This formulation is independent of the overall motion of the loop and is
thus a "local" property of the loop. Correspondingly, the number f (Li) of indepen-
dent coordinates is called the local degree of freedom of the loop, and the process of
solving the constraint equations is called relative kinematics.
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In principle, any approach can be adopted for the formulation and solution of
* the constraint equations, e.g. the well-known method of Denavit and Hartenberg

a .h -d chain of 4 x 4 transformation matrices. But the drawback of such approaches

ithat they are not very effective because the solutions must be found numerically.
There are some principal methods for stating geometric closure conditions in

kinematical loops which are independent of a particular mathematical formulation.

4.1.1. Disconnection of the multibody-loop at a body. The two halves of the dis-

frame. The main advantage of this approach is the universal mathematical formula-

tion for multibody-loops with arbitrary joints and geometric dimensions. However,
closed form solutions for the six unknown joint coordinates can be only obtained
by performing algebraic eliminations from six carefully chosen independent closure
equations (see Section 4.4).

4.1.2. Disconnection of the multibody-loop at a joint. Disconnection of the loop at
a joint with fG dependent joint coordinates gives an implicit "core" system of 6 -
fG closure equations in which the IG joint coordinates do not appear. Thus, IG
unknowns are immediately eliminated without particular algebraic manipulations
being necessary.

t 4.1.3. The "Characteristic Pair of Jcints". Here, the kinematical loop is disconnected
at two joints G. and 9b having fg,, and fg, degrees of freedom, respectively (Fig. 7).
One obtains two open chains which will be designated as the "upper segment" and
the "lower segment" of the multibody-loop (see also Hiller et al. 1986, Hiller and
Woernle 1987, Woernie 1988). Then, the six closure equations can be split up into
two subsystems. An implicit "core" system

V ---'-.:fl ,harI ''

ite csi equations gv te ent the cooriname d not benind Hteer

mt advantageous case the number of dependent joint coordinates in the character-
c air of joints is five and the implicit core system only one equation

which can be explicitly solved.
There are 6-h additional equations

4 OMP 01h.,is coc It (23)
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upper segment

Ub

rt,

Y1

lower segment

', Figure 7: The characteristic pair of joints

a to determine the 6- h "complementary" joint coordinates b belonging to the pair

of joints g8 and gb. It can always be explicitly solved as with the evaluation of the
implicit core system (21) the relative position of the bodies within both segments is
known.

4.2. THE METHOD OF THE "CHARACTERISTIC PAIR OF JOINTS"

4.2.1. The Characteristic Loop Closure Parameters. The loop closure conditions in
Eq. (21) can be expressed by certain distances and angles - the "characteristic loop
closure parameters" - measured between the reference frames X. and K1 ,' on the upper
segment and Kb and 1C., on the lower segment. These loop closure parameters can
be confined to five fundamental types expressing simple geometric relations between
points, axes or planes of the joints 9 and 9. In the following, they are visualized
by corresponding characteristic pairs of joints.

(I) Distance between two points (Fig. 8a). A characteristic pair of a spherical
joint (S) and a "reduced" spherical joint (universal joint, SR) with altogether
fg. + fo = 5 degrees of freedom gives, a acording to Eq. (22), h = I closure
parameter g, . This is the square of the distance d of the centers O and O of
the joints which can be expressed both in the upper segment (left index u) and
in the lower segment (left index 1):

Ig=ra.b, ra.6' u-r 6 , rba.b ra.6, ru.b, - r. , (24) 1'
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': Figure 8: Implicit loop closure conditions
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Here, the dot product is written both in the coordinate-free vector notation and
- for the numerical evaluation - in mnatrix notation using the coordinates of the
vectors in reference frames ;, and K1 fixed to the segments (left upper indices
u and l).

~~(Ii) Distance of a Point from a Plane (Fig. 8b). The pair of a planar joint,
1 (E) and a ureducedll spherical joint (SR) has f~ "+ fA, = 5 degrees of freedom

center 0 b of the reduced spherical joint from the plane fl of the planar joint:5 1
)(26)

1911 tba' " =a' --- . (25)
(III) Distance of a Point from a Line (Fig. 8c). For a pair of a sphenal jcint

(S) and a cylindric joint (C), fi. +f(+ = 5, the characteristic closure parameter
adtt is the square of the distance d of the center Oa of the spherical joint from
the joint axis S of the cylindric joint:

u9111 = r ia.'* Us "LL .' ~'*fa'=?~ 4 (26)

19111 =f .a'. = Us ,T ,.,' .= U.4 X u' • (29)

S b. ' "b.a

n6. = r6
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(IV) and V) Dual Angle between Two Axes (Fig. 8d.) The pair of two cylindric
joipts (C), fg. + f, = 4, requires h = 2 closure parameters g1v and gv. The
first of them is the cosine of angle a between the two axis directions:

Ugjv = u  ub, = _11, , (30)
IglV U&"a' = (31)

The further closure parameter gv is the expression dsirma with the shortest
distance d between the lines S. and $ along the common perpendicular:

ugV = nb, , 6 , = un4 Ur.,b , ,b, = a x ubi, (32)
igv = !Tb,,, , -. , = b X i , (33)

4.2.2. Systematics of the Loop Closure Equations. Generally, the loop closure equa-
tions can be stated in four steps which are summarized in the following.

Joint G. Joint Q loop closure parameter4 - type f I typ pe h 1 11 I11 IV V
S, 3 SA 2 1 1
E 3 SR 2 1

SR3E~ 2 1 1
S 3 _21
S 3 Ep 2 1 1

E 3 C 2 1 1
C 2 C 2 2 1 1

E 3 R 1 2 1 1
C 2 R 1 3 1 1 1 •
R 1 R 1 4 1 2 1
S 3 P 1 2 2
E 3 P 1 2 2
C 2 P 1 3 2 1
R I P 1 4 2 2

I P 1 P 1 4 3 1
P: Prismatic joint S: Spherical joint C. Cylindric joint E: Planar joint

I Si; Two revolute joints with concurrent axes
ER: Two revolute joints with parallel axes or one revolute

and one prismatic joint with orthogonal axesEp: One revolute and one prismatic joint with orthogonal axes

or two prismatic joints with non-parallel axes

Table 1: Implicit loop closure conditions
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Step I Choice of the Characteristic Pair of Joints. Two kinematic pairs having
joint coordinates belonging to the dependent coordinates / of the multibody.
loop are chosen as a characteristic pair of joints. The possible combinations are
shown in Table 1. The two joints are chosen in such manner that the number h
of implicit equations is as low as possible. If there are different numbers f,. and
fg, of joints coordinates, the joint with the higher number of joint coordinates
is designated by g,. With the maximum number of joint coordinates in the
characteristic pair of joints being h = 5, the highest number fg, and fG, are
three and two, respectively.

Step 2 Implicit Loop Closure Equations. The h implicit loop closure equations
(21) have the general form:

Ichae [91 1 s~

Lca iia'1)= gu (34)
g9,cher Igh - Ugh

Here, ,gi and ogi are closure parameters chosen from the five elementary types
of Eqs. (24) to (33). The number h and the type of the implicit equations
depend on the type of the two joints Q. and 9& and are shown in Table 1.
Having evaluated Eq. (34 , the joint coordinates within the upper and the lower

segment are known. Then, the direct'transitions between the reference frames
F. and KyC, on the upper segment and )C& and K., on the lower segment can be
expressed:

= GRU U A , f,,b_ ., (ur - ur,.) , (35)

AR'R t ri, . rab - (36)

To determine the remaining joint coordinates of joints 9. and 9b the relative
position of the two segments has to be considered which has bee2 not yet used
up to this step.

Step 3 Joint Coordinates of Joint 96. The two segments are built together in

such manner that the corresponding geometric elements of the two joints 9.
and 9b on the upper and the lower segment do coincide. With respect to the
different joint types one obtains constraint equations for the maximal two jointcoordinates of the joint g6 (Woernle 1988). For this, the already computed

, transitions (35) and (36) and the constant dimensions of the bodies in joint

Gb are used. One obtains the matrices 6'Rb and 'rb,.b describing the transition
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from Kb, to Kb. Together with Eqs. (35) and (36) the relative position of the
reference frames )C., and K. of joint k. can be expressed:

OR. = 4Apb, 6J4 bR., (37) It

b = rt,' + Lb', + 6'14 brb,,) (38)

Step 4 Joint Coordinates of Joint G.. With known relative position of reference
frames IC, and KC, the joint coordinates of !. can be determined using constraint
equations which depend only on the type of joint 1% (Woernle 1988).

The cases which lead to closed-form solutions represent the class of recursively
solvable multibody loops. Such cases are encountered very often in technical applica.
tions of complex multibody systems and are thus of great interest. For a more detailed
description of this method the reader is refered to the more elaborate expositions of
Hiller 1986, Hiller and Woernle 1988 and Woernlt. 1988 (see Section 4.4).

4.3. METHOD OF THE "MINIMAL POLYNOMIA1. EQUATIOI'

This method can be regarded as an extension of the above .,aentioned method of
the characteristic pair of joints. The idea is to state the constran .L equations for
all possible joint configurations in a recursive form, whereby for the first unknown
joint coordinate a polynomial of minimal order has to be derived. In the case of
only rotational coordinates the polynomial is stated in tanIL and the order of the
polynomial is dependent on the geometry as well as on the type and combination of
joint coordinates. If the kinematic loop consists of six arbitrarily arranged revolute
jn;nts (this represents the "worst case"), the minimal order of the polynomial is 16.
Dependent on the type of the unknown joints as well as on their arrangement, the
order of 'he polynomial equation may vary between 16 and 2. All possible combi-
nations together with the order of the polynomial equation (which is equal to the
number of possible Lonfigurations) is shown in Table 2. In comparison to the method
of the "characteristic pair of joints", some additional geometrical conditions have to
be stated. This method was first developed by Lee and Liang 1988 and has been
elaborated in Lee et al. 1991. Further improvements are given in Raghavan and RothI 1990.

The principal idea behind the method of minimal polynomial equations is to
state an appropriate set of closure equations from which the unknown joint angles
can be algebraically eiiminated in such a way, that the degree of the fir.ai polynomial
equation becomes not higher than 16. The method developed by Lee and Liang uses a
two-step elimination of four unknown angles from a set of 14 loop closure equations
containing five unknown joint angles. The complete elimination process described
in (Li 1991) gives the following calculation scheme for the arbitrarily arranged six
unknown joint angles (e is a vector containing further parameters):

16p

di = 0 (39)
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t- - Order of

Order ofMechanisms
polynomial

R-3C RCCC
2R.2S RSSR

RCPCR, RRCPC
2R-P-C RCPRC, RCRPC, RPCRC

RRPCC, RPCCR
____RPRCC

RPCPRR
2 RPRPCR,RRPRPC

3R-2P-C RPRPRC
RCPPRR, RRRPPC, RPPCRR
RRPPRC, RCRPPR, RPPRRC

___RPRCPR, RPRRPC
4-P RRPPPRR, RPPPRRR
[4-P RPRPPRR, RRPRPPR

RPPRRPR
___________RPRPRPR

4R-S RRSRR, RSRRR
4 4R-E RRERRRERRR

RCRCR, RRCRC
3R.2C RCRRC

-RCCRR.RRRCC __________

RRRPCR, RRCPR
4R-P-C RRRRPC, RPCRRR

8 RCRPRR, RRCRPR, RRRPRC
j ______RCRRPR, RRPRRC

RRPRPRR, RRRPRPR
5R-2P RPRRPRR,RPRRRPR

___RRRRPPR, RRRPPRR
SR-C RR.RRCR, RRRCRRR, RRRRRC

16 6R-P RRRPRRR, RRRRPRR, RRRRRPR
______7R RRRR.RRR

P: Prismatic jont S: Spherical joint C: Cylindric joint E: Planar joint

Table 2: Types of single-loop mechanisms.
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02 = 2(p,3) (40)

= /36( 3 /1 (42)

05 = '3(5 1, 2,4, 0, ,3) (44)

4.4. AUTOMATIC GENERATION OF CLOSED-FOaM SOLUTIONS

As shown in Table 2, closed-form solutions are always possible if the order of the
minimal polynomial equations equals two. By a suitable combination of the geomet-
rically intuitive approach of the characteristic pair of joints with algebraic techniques
known from robotics (Paul 1986), it is possible to derive an algorithm for the auto-
matic determination of closed-form solutions of the inverse kinematics problem for
loops in which such solutions exist. Such an approach was recently developed by
Kecskemithy, and published in Kecskemithy and Hiller 1992. In the sequel, the
main ideas of this approach are described.

One considers a single closed multibody loop modelled as a sequence of homoge-
neous transformations Ai , i 1, ... , n (Fig. 9).

An

A1 A

Figure 9: Basic structure of a loop

Recall that a homogeneous transformation Ai models the motionfrom a reference
frame K~i-. to a reference frame JC, , expressed as the transformation of point
coordinates defined with respect to K, to corresponding coordinates with respect to

MY'



k1,-_. Such a transformation matrix has the structure

F ' -I  r P11 P12 P13 r,
- , P21 P22 P23 r2

[0 1 P31 P32 P33 r3
0 0 0 1

where '-R, is the orthogonal 3 x 3 matrix of rotation transforming vector components
from K, to Ki-, and :ir is the radius vertor connecting the origin O,_1 of IC,-..!
to the origin Oi of K, in the decomposition with respect to IC,_ (the indices i
and i - 1 have been left out in coefficient-wise notation for better clarity).

The closure of the loop is achieved by stating K ,- Ko or, equivalently

A1A2 .. A, = I 4 • (46)

Eq. (46) contains twelfe non-trivial scalar equations to be fulfilled for the loop to stay
closed. Out of these, six are dependent because of the orthogonality condition of the
rotation matrix. However, just striking out six equations is not feasible, because then
(a) not all uniqueness conditions of the solutions can be fulfilled, and (b) closed-form
solutions will not become evident.

B, Actually, in order to find closed-form solutions even more equations have to betaken into account by considering also alternative forms of the closure condition

Eq. (46), such as

Ai,, , .. A., = A-,'.. A-,' A-'1 ... A71t, (47)

where I < j < k < n andit ... ,i, is a cyclic permutation of 1,...,n. These
equations state that any two possible branches within the loop starting at an arbitrary
reference frame Ki, and terminating at another arbitrary K,k,+ must yield the same
transformation.

The key issue of an algorithm for finding closed-form solution is thus to pick out
from Equations (46) and (47) a set of six scalar equations

(PI) = 0 1
f2:(02; 01) 0 (48)

6 (6 ;06,-....,1) = 0 1
(plus some additional equations needed for unique solutions where possible) with
functions f, containing exactly one unknown more than the preceding equations and
being mostly of order two in the corresponding unknown variable j3i (or tanPA in the
case of a revolute joint).

This problem can be solved by resorting to the geometrical properties of the
transformation matrices A,, in particular, of their invariance properties. We introduce I
as objects of interest the three coordinate planes'and the origin of the reference .
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systems, respectively. These geometrical objects have the following representations
homogeneous vectors

0io 2 10] e 3 1 ~ 0 (49)

where the symbol Wn is stacked above homogeneous vectors for better clarity (but
will be dropped later when there is no risk of confusion between homogeneous and
euclidian vectors) and the vectors 'eiare particular instances of unit vectors O=~,0Jr

representing the points at infinity of the projective space P,1 (Bottema and Roth
1970). Note that the following properties hold

A-1 A~ (50)

2 TA = (A T H)=(A_,A H ,) (51)

iiIa= ViiI ,(52)

where 11 ila denotes the "homogeneous norm"

IIA 11 I= IIA' 11lK. (53)

The transformations Ai can be divided into elementary, general a.nd trivial tranus-

formations. The elementary transformations

1 0 010 1 0 0 s
0o~e1  cse - sine 0 0 100Rot fO5l: ij Transbs =(, s

0Uie cs 1 0

0 00 1 00 0r . 0 1~

Rotj ~ cose C0:: sine 0 1 0rnt~,j 0 0
0 01 01001)

(Cose- -sine 0 0 10 0 0A
Rot~,J= sine cose 0 01 0rnI~1 I( 1 0 0

0 0 100 01 si
0 0 0 1 0 001
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are denoted as AE(A,; 0), translational and rotational transformations being distin-
A guished by a boolean variable a which is 1 in the first case and 0 in the second, and

for which - = I - o. Recall that these transformations form a basis for the group
of rigid rotations, so that any rigid-body motion can be decomposed into a sequence
of six such transformations. For the general transformations, the sub-types general
translational (AT), general rotational (AR) and general spatial (AG) motion

AT 13 Aj G (54)0 ,AR= 0  1 0 1]

are taken into account. Finally, there exist 24 trivial transformations which just
interchange the coordinate axes (and thus involve no numerical computations). These
can be collected with the notation

Ap = Permi,,i ] 2 ,3  (55)

where the coefficients of the rotation part of Ap fulfill the relationships

+ I + for ij= kp,k(Perm[il,i2,i3 ]) 1 for ij=-k (56)

0 otherwise

We now assume that the sequence of transformations within the loop is such that
the unknown variables only appear in elementary transformations, and that all trivial
transformations have been eliminated. This can be always achieved by reducing com-
posite transformations, such as the four-parametric DENAVIT-HARTENBERG-form,
into elementary transformations, and shifting trivial transformations to the left or
to the right (Kecskemithy and Hiller 1992). the key idea of the algorithm is now
to regard the characteristic measurements within the loop as particular projection
operations, and to search the sequences of transformations for sub-sequences which
leave some geometric elements invariant. This is explained in the sequel. A

4.4.1. Projection Operators. Projection operators represent the basic means of ob-
taining scalar equations from the general closure condition Eq. (46). As general cri-
teria, projection operators should not be any linear combination of the invariants of a
4 x 4 matrix, and should yield as simple expressions as possible in order to allow the
closed-form resolution for any unknowns contained in the projected matrix. In order 4
to achieve this, projection operators are lead back to the basic geometrical measure-
ments used in kinematics. Currently, five such basic measurements are being used':
(I) the quadratic distance between two points pp , (I) the distance of a point to a

'Recently, a sixth measurement type was introduced in Lee and Liang 1988, which can be in-
terpreted as the projection of the orientation vector of a line with the reflection of the orientation
vector of a second line about the plane perpendicular to the ,ector connecting one reference point
on each line, see also Angeles and Zanganeh 1992. The incor,,oration of this measurement type in
the general theory is subject of future research.
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plane 9EP, (III) the cosine of the angle between two planes (or orientations) 9EE,iI (IV) the distance (along the common perpendicular) between two lines 9LL and (V)
the quadratic distance of a point to a line gnP, see e.g. Woernle 1988 or Hiller and
Kecskem6thy 1989. In order to carry out these measurements using homogeneous
transformations, two reference frames IC (fixed) and I' (moved) are introduced, such
that the points, lines or planes mentioned above correspond with either an origin
o, a coordinate axis £, or a coordinate plane li, respectively. Denote by A the
homogeneous matrix relating coordinates with respect to K' to coordinates with re-
spect to K. Then, the measurements mentioned above define the following projection ,' operations

gpp(A) = IIA I12 (57)
aT

gEp(A; ji) = _H, A_2 (=r(A)) (58)
T Hi

gEE(A;,) = Hg, A 1, (= p(A) (59)

9LL(A; e.,,') = J [Rot[A]g, x Trans[A]] (=,k. p,(A) . ri(A)) (60)H ,OT H 2,

gLp(A; ,) = 1IA I12 - , A 2) (61)

Note that for the projections gEP or gLP the corresponding plane or line is chosen
from the fized frame. This is consistent with the property that premultiplication of
homogeneous matrices is only meaningful -for orientation vectors. Resolution of the
projected matrix with respect to an unknown joint-coordinate contained in A is
obtained by decomposing

rR rt ] [RE(~,1 re;1)rR,r1AAo =A oa A, = ,(62)

where AE(Av; 1) is an elementary transformation with

RE(f,;1) = Ia+U(sin i,+(I -cos Z') =I 3 + WT(,;) (63)
rE( ,;/3) = aue (64)

and -b denotes the anti-symmetrical matrix

(0 -V3 V2

-V2  V1  0 )
Note that all projection types can be described by a general projection operator

7r( L R; A), where L_,R E {_o,.C,,f,} denote a "left" and a "right" geometrical : ,
element, between which the measurement is carried out. Table 3 shows the actual
projections which are performed in each case.

4,
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2 gpp(A) gEP(A- ; _Mj 9nP (A-'; Mu,)
, , gp(A ; u) g(A-; ,none

£.i gLp(A ; u.) none gzLL(A ; _u,_ ),

t2

Hii

Table 3: Definition of the general projection operator 7r (., ; A)

4.4.2. Use of Isotropy Groups for Elimination of Unknowns. If one can find a se-
quence of transformations which leaves geometric element invariant, it is clear that
any projection involving that geometric elements will be independent of the vari-
ables contained in that sequence. The characteristic properties of such sequences of
transformations can be quickly recollected as those of particular subgroups of the
group of general rigid motion, namely the isotropy groups of the geometric elements
in question.

f Let G be a group acting on a smooth manifold M. For each x E M, the isotropy
group is defined to be G { g E G : g.x = x I (cf. Olver 1986). The isotropy groups
of interest in the formulation of constraints are the subgroups of rigid motion which
leave the origin, the coordinate planes and the coordinate axes invariant, respectively,
i.e. the sets

A:A } E I, ,(65)

Denote by E a particular element of an isotropy group, where the super-
script ( ) will be dropped when not needed. The following three group properties are
an immediate consequence of the definition of isotropy groups

(IGI) 14 E

(IG2) 1A4 E A t* E

(1G3) AE P' A AEA 1 
=~ ~AEA"

Particularly because of property (IG3), the detection of subsequences of transforma-
tions which leave a geometric element invariant is very simple, namely just a gathering
of adjacent transformations with this property. Suppose that one has found two non-
overlapping subsequences AA and AB with respective invariant geometric elements

and , and that both of these contain as much elements and as much unknowns

as possible among all possible sequences of transformations. whereby A9 contains a -..
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smaller or equal number of unknowns than AA. After appropriate cyclic permutation,
I the closure condition can be transformed into the unique form

At AB Al AA = 14 , (Closure Type 0) (66)

which can be immediately transformed into

A l .A = A7 (67)

Then, because AA leaves f invariant, and AB leaves - invariant, the projection op-
erator lr (-' 1A ; AB All AA ) will be invariant of both AA and AB. Thus, applying
this projection on Eq. (67) yields the scalar equation

Al)= A-' (68)

which is independent of aLl variables contained in AA as well as in AB. Clearly,
i : if all but one of the current unknowns are contained in AA or AB, then either At

or All contains exactly one unknown variable, and after decomposing according to

Eq. (62) and applying the projection operator selected by A and f., a resolvable
scalr euaton esuts.Eq. (67) corresponds to the division of the loop in four sub-

chains (Figure 10), of which AB and AA have no influence on the projected equation.
This division can also be used for the efficient formulation of the Jacobian of the
loop. It is conjectured that this division is optimal in this sense.

All

AA(A

4

Figure 10: Qualitative structure of a loop for the "optimal" division

In principle, after finding a first closure condition with the properties discussed
above, the remaining unknowns can be resolved in a straight-forward manner using
existing algorithms. However, by a slight modification of expectable closure condi-
tions, the same basic steps can be applied for all unknowns in the loop and even *

in the case of some overconstrained mechanisms, which are not paradoxical in the
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sense defined in Angeles 1988. Then, at any stage of the analysis, besides the closure
condition denominated Typ 0 above, only one of the following situations can arise:

A = 14 (Closure Type 1) (69)

A8 AA = 14 (Closure Type 2) (70)
Al AB All AA = 14 (Closure Type 3) (71)

Al KA = 14 (Closure Type 4) (72)

Clearly, in the first of these cases the whole sequence of transformations in the loop
is element of the isotropy group of some geometric element -. Thus, any projection
carried out with this element yields a scalar equation which is identically fulfilled. As
there are three independent projections which can be carried out with one geometric
element, a closure condition of Type 1 reduces the number of independent constraint
equations of the loop by three. For example, in the plane four-bar mechanism all
transformations share as invariant element the plane perpendicular to the rotation
axes, so the number of independent constraint equations is here only three. Similarly,
in the closure condition of Type 2 the chain is decomposed into two sequences which
contain together all unknowns and are elements of the isotropy groups of geometric
elements L and fB' respectively. Thus the projection operator selected by these
two elements yields again a scalar equation which is independent of any unknown
variables. Such a situation arises for example in the case of a Cardan shaft, where the
six rotational joints can be grouped into two sets of respectively three intersecting axes
with the intersection points as corresponding invariant geometric elements. Note that
for these two types of closure conditions, the sequences AA or AB may be bordered
with additional transformations containing no unknowns without changing the basic
results. Such bordering transformations have been intentionally left out for better
clarity.

The closure conditions of Type 3 and Type 4 do not occur in the initial analysis
of the loop, but in the process of eliminating unknowns contained in the sequences
AB and AA. The present algorithmic approach for obtaining scalar equations for
these unknowns is as follows: after having produced the projection pertaining to
and L, the invariance property associated with fB is removed from the elements
of A8 together with the current resolved unknown. Then, a new closure condition
is searched by applying the same criteria as above. Eventually, no more invariant
properties remain besides those in , but there is still an unknown in the remainingtransformations. This is the situation in the closure condition of'-Type 3, where _XB

contains the remaining unknown in a form similar to Eq. (62). Then, a similar projec-
tion as Eq. (68) is carried out, but this time, f-B is taken as a geometric element which
actually is transformed by TB, thus yielding a scalar equation which contains this It
unknown. In the case that TB is a rotation, these elements correspond to both coor-
dinate planes parallel to the rotational axis and a uniquely solvable pair of equations
is obtained. After nerforming this step, the invariance properties of L are removed
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from the elements in AA, and the whole process described above is repeated, until

eventually one unknown is pending, but no invariant element remains whatever. This

is the situation of closure condition Type 4, where AA holds the remaining unknown.
Then, again a similar projection as Eq. (68) is carried out, but this time and
are taken as geometrical elements which are actually transformed by AA, yielding as
in the case of the closure condition of Type 3 a unique solution.

A description of an implementation of this method has been given in Kecskemdthy
and Hiller 1992. Further, an application of the generation of closed-forn solutions to
the automatic programming of high-speed processors, like the "CORDIC" (COordi-

* nate DIgital Computer) has been worked out in Risse 1992.

5. Kinematics of multiloop systems

5.1. THE CONCEPT OF THE "KINEMATICAL TRANSFORMER"

For the following it will suffice to note that the relative kinematics of a multibody loop
can be reduced to a system of equations which yield six dependent joint coordinates
as functions of f (Li) independent joint coordinates as shown in the previous section. i"
After the appropriate formulation of the constraint equations these functions can
be regarded as producing a nonlinear transmission behaviour between independent
"input" variables and dependent "output" variables. This is represented in Fig. 11
by a "black box" called kinematical transformer, where for better clarity the loop
index Li is dropped and independent joint coordinates are denoted q. With these
transmission elements, the constraint equations of general multibody systems can be
systematically partitioned into small subsystems, allowing one to find closed-form
solutions for the constraints of systems with multiple multibody loops as easily as for
single-loop systems, where this is possible.

5.2. ASSEMBLY OF KINEMATICAL TRANSFORMERS

In a general multibody system it is possible to define a fundamental system of
multibody loops, which correspond to the fundamental cycles of the associated graph
of interconnection. To take advantage of this property, one regards tb multibody
system as a multiloop system: introducing appropriate joint coordinates, and form"-
lating the constraint equations of each multibody loop individually, yields a set of
"kinematical transformers" which are in a first step independent. Clearly, the Com-
plete set of joint coordinates introduced to describe each individual multibody loop
as a "kinematical transformer" leads to a redundant set of joint coordinates. Thus
additional conditions have to be formulated in order to make the complete set of ,
variables 8 consistent. These consistency conditions will define the interconnection
of the individual transmission elements. as shown in the following.

Consider a joint 9,, contained in nL (jointi) loops, and connecting nB (g,) bodies, t
see Fig. 12. The relative position of the bodies bo',..., b9; connected by the joint
can be described by a unique joint coordinate pi for each body b,. as measured
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Figure 11: The general kinematica transformer

from one of the bodies, say body b1. Within each loop LA incident with joint 9i, an
additional joint coordinate k9, describing the relative position between two bodies
bb,(k) and b2(k), is introduced. Thus the following relationships hold at the joint:

= , (73)

P61 (Lk) - A 2 (Lk) = f" - Qk; k =l,1.nL (9i) (74)
where ac' represent some constants. This is a system of nL(gi) + 1 linear equations
which can be put into the compact matrix notation

! i P;'A- 00- , +  -  '(75)

with 1

=; . ;a , [= . . (76)

Oi, mo,

Clearly, for the (nL(gi) + 1) x nB(Qi) matrix PO- having general rank r ', with

r < , nB,(G). r'< ni (G)l . (77)

i45
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Figure 12: A joint connecting several bodies

Eq. (75) only has a solution if _9a satisfies riL(G) + 1 - r linear equations 
°

+ 'B = 0 , (78)
, ~where, after appropriate column pivoting of matrix P#,, the (n¢.(G) + 1 - r#') x nL(G)

matrix X , will contain only zeros and 4-1.
* A case of particular interest is obtained if the matrix P", has full column rank,3(79)

> In this case the number of independent linear equations in Eq. (78) is
2(80)

and the number of intercornections between the loops can be established very easily
at each joint. If Eq. (79) holds for all joints Qi, the multibody system is said tobe completel loop-connected. This is the case if every body belongs to a loop, and

, ! every loop has at least one body in common with another loop. Complex multibodyt ~ systems, or at least subsystems of complex inultibody systems, typically belong to~this category.
Eq. (78) describes the independent linear relationships which hold between thejoint coordinates of the individual multibody loops. Clearly, they are defined uniquely

at each joint and involve only signed sums of joint coordinates. Thus they can berepresented by summlng junctions connecting the individual kinematical transformers
in a block diagram designated kinematical network, see Fig. 13 below.It is casy to show that the sum of the local degrees of freedom of the multibodyloops f(L,), reduced by the sum of the number of interconnection equations at each
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joint p(gi), results in exactly the number of degrees of freed,)m of the correspond-
ing multibody system. The "assembled" kinematical transformers thus represent an
isomorphism of the relative kinematics of complex multibody systems to a much sim-
pler representation. From this representation, a further optimization of the system

of constraint equations is possible.

5.3. DETERMINATION OF EQUATION ORDERING

In the block diagram of kinematical transformers, the orientation of the edges rep-
resents the sequence in which the individual equations are solved. An aspect of
particular interest is to find an ordering of the constraint equations, such that they
are recursively solvable. This aim, which involves also the choice of generalized co-
ordinates, can be iormulated as an orientation problem in the block diagram. The
conditions for recursive solution axe:

1. The number of external inputs is equal to the number of degrees of freedom of
the system.

2. The number of inputs for each multibody loop L, is equal to the local degree
* of freedom f(L,) of the loop.

3. Each summing ilinction has exactly one output.

4. There are no closed circuits.

5. The local kinematics of the transformers are recursively solvable.

The analysis of complex multibody systems shows that for the majority of tech-
nical applications conditions (1) through (5) can be accomplished. These systems
are termed recursively solvable systems. Systems for which not all conditions can be
fulfilled are called non-recursively solvable systems. The most common reason for the
appearance of a non-recursively solvable system is that conditions (1) through (4)
can not be accomplished. The cases for which condition (5) is violated are very rare
and shall not be regarded here.

A method for finding an orientation of the edges of the block diagram which ful-
fills conditions (1) to (4) in the case of recursively solvalbe systems is proposed in
Hiller and Anantharaman 1989 and Kecskemdthy 1993a. The equation ordering can
be found very easily in this case by considering the degree of coupling of the elements
(i.e. the number of edges connecting them to other elements) as compared with the
number of allowable inputs: starting from unoriented edges, one subsequently orients
the edges of those elements (summing junctions or transformers), whose number of
unoriented edges is not greater than the number of allowable inputs, as inputs. After
orienting all edges, the block diagram now also contains the solution flow for the rel-
ative kinematics, which represents the required ordering of the constraint equations.
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As an exampie of a recursively solvable system. a planar mechanism consisting of

four interconnected planar four-bar loops is considered, see Fig. 13. The redundant
set of relative coordinates includes for each loop four variables. Three of these can
be solved as functions of the fourth in closed form, yielding corresponding kinemat-
ical transformers. There are three linear assembly equations occuring in the joints
A, B, C . A sequence of elements for which unoriented edges can be oriented as
described above is: L 4 , C, L3 , L2, B, A, L, . This sequence yields a -solution
flow" which obviously is recursive. Thus the constraint equations of this system are
solvable in closed form.

A 4

oi 1 321 -1341

013112

12 132L21

I B

A

a) multibody system b) kinematical network

Fieire 13: A recursively solvable system and its corresponding kinematical network

The equation ordering for the non-recursive case is more difficult to optimize. A
possible method which gives good results is to first remove as many summing unctions
as necessary until the remaining system is recursively solvable. This momentarily
increases the number of degrees of freedom, so additional pseudo-inputs i have to be
introduced. The linear equations whih correspond to the removed junctions then
define implicitly the functions 4(g), which can be solved numerically.

A i example of a non-recursively solvable system is shown in Fig. 14. The planar
mechanism consists of five independent multibody loops which are again four-bar
mechanisms. There are four linear assembly equations at the joints A, B, C, D
From the corresponding block diagram it is clear that the algorithm described above
can not start, because there is no element which has an allowable number of inputs
greater than the number of connections. This situation changes when the summing
junction D is removed and an additional input 4 is provided. In this case the system
is recursively solvable. The original system is achieved by re-considering the closure
condition at junction D, which yields the implicit equation for the determination of
the functions (q).
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Figure 14: A non-recursively solvable system and its kinematical network

In technical applications only very few, if any, of these additional implicit equa-
tions occur. A!. a consequence, the number of implicity defined functions is sub-
stantially reduced, and the kinematics, as well as the dynamics, can be solved very
efficiently.

6. Nonholonomic Constraints

Since a general discussion of nonholonomic constraints is beyond the scope of this
paper, it seems to be more suitable to consider the rolling wheel as a typical example
of nonholonomic constraints. It is part of the roboTRAC - a combined wheeled
and legged vehicle - which can be modelled as a complex nonholonomic multibody
system with kinematical loops and a time-varying structure (see Fig. 15). Several
investigations (Hiller and Schmitz 1990, Hiller and Schmitz 1991, Hiller et al. 1990)
dealt with the formulation of the kinematiLs and dynamics as well as the generation
of walking patterns for this mobile mechanical platform.

6.1. KINEMATICAL MODEL

In this chapter, two different approaches for solving the nonholonomic kinematics of
the roboTRAC, which have already been presented in detail in Hiller and Schmitz
1990, Hiller et al. 1990, will be compared and discussed. For the subsequent investi-
gation the following assumptions leading to the kinematical model shown in Fig. 15
hold:

. The free motion of the carriage will be described by six coordinates represented
by three prismatic joints (3P) for the translational motion and by three revolute
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Figure 15: The roboTRAC (Werder 1988).

joints (3R) for the rotational motion connecting the carriage to the inertial
frame.

* The wheels can be substituted by skids which do not influence the kinematical
behaviour of the system.

0 Every foot tip will be connected to the environment by three prismatic joints
(3P). This is a suitable approach to 'control the walking motion of the robo-
TRAC.

Not taking into account the nonholonomic constraints arising from the skids, the
number of degrees of freedom of the complete holonomic system is

fh= 12

The configuration space has the dimension dim C = 12 (Neimark and Fufaev 1972).
Due to the two nonholonomic skid conditions, the number of degrees of freedom of
the complete system is reduced to

f=1 o

' i which is equal to the dimension dim P of the phase space.

6.2. CONSTRAINT EQUATIONS OF NONHOLONOMIC SYSTEMS

The nonholonomic constraints in a nonholonomic system are represented by linear
relations between velocities, which are not integrable. Assume a nonholonomic multi-
body system with h = ro holonomic constraints and n nonholonomic constraints. Let

7117o



the dimension of the configuration space C be m = no - h while the dimension of the
phase space P is f = rn - n.

The holonomic constraints can be stated as a set of nonlinear algebraic equations

g, =0 1-~l.. ,h ,(81)

where _3 is the no x I vector of the joint coordinates. Differentiating Eq. (81) with
respect to time yields

' t = (82) 4

with Jh as the h x no Jacobian of the holonomic system.
, Additionally, the nonholonomic constraints can be expressed as

J/ 0=0 (83)

where J, is the n x no Jacobian corresponding to the nonholonomic constraints. Two
procedures to solve the kinematics of a nonholonomic system are possible (Fig. 16).
On the one hand, all n + h constraint equations can be stated on velocity level as a

R set of linear equations; the corresponding position can be obtained from numerical
integration of all joint velocities. This method will be named velocity constraint
method (VCM). On the other hand, all h holonomic constraint equations can be stated
on position level as a set of highly nonlinear equations, while the n nonholonomic
constraints are stated as a set of linear equations on velocity level. The corresponding
n position coordinates can be obtained from numerical integration. This method will
be named combined constraint method (CCM).

6.3. KINEMATICS OF THE ROoTRAC

In this section, only a short overview of both methods including the solution procedure
will be given. A more detailed description can be found in Hiller and Schmitz 1990
and Hiller et al. 1990.

6.3.1. Velocity Constraint Method. Considering Fig. 17, the following velocity-level
equations can be formulated for the holonomic constraints:

* The velocities of the foot reference points T, i = 1,2 relative to the inertial
frame KI must vanish:

VT,=0, 0 =1,2 (84)

* The projection of the velocity vectors vsi, i = 1,2 of the skids onto the ground
normal vectors nsi, i= 1,2 must also vanish:

vn,0 i=1.2 .(85)
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II
* The component of the angular velocity ws,, i = 1,2 of the skids normal to

the plane spanned by the ground normal vectors and the skid's longitudinal
direction has to be zero:

wsi'(us, xnsi)=O , i1,2 (86)

forward kinematics

JACOBIAN JO

. J, =0

tL

=-J1 J

T.

f1 d
0

Figure 18: Solution steps for a nonholonomic problem

Furthermore. the nonholonomic constraints implying that the instantaneous motion
of the skids must be parallel to their longitudinal axis have to be considered:

vs,.(us, xns,)=O i 1,2 (87)
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b" Evaluating Eqs. (84) - (87) using forward kinematics yields

Ji3= , (88)

where J9 represents the (12 x 22) Jacobian of all constraint equations and 3 is a
(22 x 1) vector containing all joint velocities.

After choosing f = 10 velocities out of as independent velocities and assembling
them into the vector of the pseudo-velocities _r, the remaining 12 velocities 1, can
be obtained by solving Eq. (88). To get the joint coordinates of the complete system
at each time step, all 22 joint velocities have to be integrated numerically (Fig. 18).

6.3.2. Combined Constraint Method. In this method, first a holonomic system with
f = 12 degrees of freedom is exhaustively modelled for efficient kinematics. The corre-
sponding constraint equations on position level can be derived using the characterist:c
patr of jo:nts. The solution flow based on the principle of kinematical transformers
becomes obvious from Fig. 19. In this figure, LA and LB represent the kinematical
loops between the iuertial frame and the foot points T1, T2 , while Lc and LD repre-
sent the kinematical loops between the inertial frame and the skid reference points
S 1 , S 2, respectively.

4,

4,

45o

Figure 19: Block diagram of the holonomic system
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Regarding the nonholonomic systemn in a second step, the degrees of freedom are
reduced from twelve to ten by the two nonholonomic skid conditions. Introducing
the independent pseudo-velocities

To = =q I Zl....10

the two dependent velocities 41, and 412 can be determined from Eq. (87).
For this, the linear nonholonomic constraints can be expressed in terms of the

I I:

pseudo velocities ir and the unknown velocities 41 and 412-

11 + [ (r *0
A [ 1 0 (89)

Eq. (89) can be represented by the following block diagram:,

£ relativeRegematic --- nonholonomic

r (holonomic) sicod constraints

The still unknown matrix A and vectorc can be determined by evaluating Eq. (89)
with particular inputs as described insTable 4.

4 en 11 12=0
q rasgiven

411 = 1412 =0

Table 4: Determination of A and g

Now, the unknown velocities can be calculated as

4:1 .on i (90)

i4 2

To get the position corresponding to each time step, Eq. (90) has to be integrated

numerically.
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6.3.3. Comparison of Methods Once the possibilities of solving the complex kine-
matics of the roboTRAC have been presented, it is interesting to determine the
number of mathematical operations and CPU-time needed. For this comparison, a
HP-Apollo Workstation Series 400 with MC 68030 processor has been used. Table 5
contains the number of mathematical operations as well as the CPU-time needed
for calculating the right hand side of the differential equations. The optimizations

method ,VCM VCM(O) CCM ICCM(O)
multiplications 1277 740 983 598 A

additions 980 594 716 475
trigonometrical 26 26 48 44
functions
CPU-time for the 0.0154 0,0115 0.0157 0.0098
right hand side [s]

VCM Velocity constraint method
CCM Combined constraint method
VCM(O) Optimized variant of VCM
CCM(O) Optimized variant of CCM

Table 5: Comparison of methods.

involved in VCM(O) and CCM(O) are described in Vogel 1991. Finally, it has to
be emphasized that the formulation and implementation of the combined constraint
method (CCM) is more complicated and time consuming..

6.4. KINEMATICAL CONTROL OF AN EXPERIMENTAL SET'P

Up to now, simulation results are demonstrated by means of diagrams or computer
animation (Fig. 20). Another possibility is the development of a controller trans-
forming the simulation results into the motion of a scaled model of the mechanical
system. The controller is based on the p-processor INTEL 8039. It is fed from a
digital computer by the parallel interface. The output of the controller is connected

to a multiplexer distributing the signals to eight servos, which represent the actuators
of the mechanical model of the roboTRAC (Fig. 21).

7. Implementation specific issues

The concepts described in the previous sections offer a high potential for program
optimization and modularity. However, they are difficult to realize, because (a) their
efficiency depends to a large extent on a thorough modelling of the sub-components,
(b) the components contain a great deal of data and sub-functions which must be
administered within the running program, and (c) the solution techniques must be
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Figure 20: Usual visualization methods.

carefully adapted to the structure of the equations. To cope with these problers,
a series of techniques have been developed, which shall be briefly described in the
following.

7.1. SYMBOLIC FORMULA MANIPULATION

The resolution schemes described in Section 4.4. and Section 5. lend themselves for
symbolical formula manipulation. Specifically, an implementation of the methods of
Section 4.4. has already been carried out upon the symbolic programming language
Mathematica. Such an implementation can be used, on the one band, for obtaining
symbolical expressions of the resulting scalar equations. For example, the session for
the inverse kinematics of a planar four-bar mechanism looks like this:

In [2] :u PlaneFourBarMschanism

Out[2]z {DHTransform[betal, 0, 0, 1 • DHTransformnbeta2, 0, 0, r]
> DHTransformEbeta3, 0, 0, d) . DHTransform[beta4, 0, 0, a],
> {boeta2, beta3, beta4}-
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In [3] :u GenerateConstraints [PlaneFourBarMechanismj

Out[3)- refi, ull, 0. 0, 0),
> , ESFEI, Null. 0, 0. 0,
> ESF[1, -Null, 0, 0, 0),
> ESF(O, -beta2, -2 r ADHICI, 4], 2 r s,

2 2 2 2
> -d + r + s * ADHICI, 4) 2,
> ESF[O, beta3, d, 0, -ADH3[1, 4], -ADH3[2, 4],
> ESFEO, beta4, Sin[beta3], Cos[beta3], -ADH3[2, 1), -ADH3(1, 13J}

In[4]:a GetSubstitutions[]

Out[4]= (ADH[ll, 4) -> -l+ s,
> ADH3[1, 1) -> Costbetall Cos[beta2] - Sin~betall Sin[bota2),
> ADH3[1, 4) -> -r + ADHII, 4) Cos[beta2] + a Sinlbeta2],
> ADH3[2, I] -> -(Cos[beta2) Sintbetal)) - Cos~beta)] Sin[beta2],
> ADH3[2, 4] -> e Cos[beta2] - ADHI[I, 4) Sin[beta2]}

Here, the notation DHTransform(betal, 0, 0, 1) is a short-cut for specity-
ing the four DENAVIT-HARTENBERG-parameters of a general transformation, and
ESF (sigma, beta, A, B, C) is a shortcut for specifying a scalar equations of order
2 for the unknown variable beta, which is either rotational (sigma = 0) or transla-
tional (sigma = 1). The lines ESF[t, Null, 0, 0, 0] denote identically fulfilled
constraint equations, which are typical for special cases of over-constrained, but mov-
able mechanisms.
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7.2. OBJECT-OR!ENTED PROGRAMMING

The problem of integrating the concepts in a running program can be effectively tack-
led by resorting to the paradigm of object-oriented programming. Several approaches
have emerged in the last years for cartrying out such a modelling, three of which are
of particular interest:

* Using object-oriented pronamming for program structurization. Excellent ex-
perience where made endowing traditional FORTRAN-programs with an object-
oriented shell. By this, the wretched problems of variable passing in huge pro-
grams could be avoided, and the efficient implementations already perfcrmed
earlier could be integrated into large programs as modules with literally no
side-effects (see e.g. Hilkr and Pichler 1993).

*Using object-oriented programming for algebraic manipulations. At this level.
)the most frequent operations involving scalars, vectors, and matrices, are im-

plemented at an abstract level, supplying the user with simple interfaces for the
definition and evaluation of composite functions and their derivatives (Anan-
tharaman 1993).

9 , Using object-oriented programming for mechanical modelling. This type of mod
elling aims at describing the physical interrelationships within the mechanical
system at such an abstract level, that generic objects can be identified whose
actions can be described without resorting to any particular representations. A
particular modeling in this direction is the treatment of mechanical components
as "kinetostatical transmission elements", which transmit m=tion, forces and
inertia properties along the multibody system (Kecskemithy 1993b).

7.3. SPECIAL SOLUTION TECHNIQUES

The method described in Section 3 for formulating the equations of motion of multi-
body systems in minimal coordinates is particularly efficent for systems with com-
plex topology including multiple kinematical loops, but other solution techniques,
which are often based on other types of coordinates and different mechanical prin-
ciples, may be more suitable for particular system topologies. Taking advantage of
obje-ct-oritnted programming methods, it is quite realistic to apply alternate so!ution
techniques within the same program environment. Several such specialized solution
techniques have indeed been implemented and will be briefly described in the follow-
ing:
Recursive methods such as those of Featherstone 1983, Br,%ndl et al. 1986 were for-Ii

mulated for the forward-dynamics problem and are particularly effirient for tree-
structured systems, achieving an O(N) operation count, where N is the number
of bodies. By a reinterpretation in the context of a differential-geometric ap-
proach it was possible to implement a variant of this method as an option in
the group's software package (see Kecskemithy !993a).

159

L0S



Hybrid methods which combine features of the minimal-coordinate method. recur-
sive methods and absolute-coordinate methods can be applied due to the open
and modular nature of the object-oriented programmign environment. Such
methods permit formulations tailored to a particular mechanical system (see
Kecskemithy 1993a, Anantharaman 1993).

Direct methods for differential-algebraic equations are a prerequisite for the
use of absolute-coordinate methods or the hybrid methods mentioned above and
permit numerical integration of the equations of motion without recorting to
such devices as coordinate-partitioning or constraint stabilization. In the form
given in Anantharaman and Hiller 1991, such methods are easily integrated into
existing multibody codes.

8. Conclusions

The approach discussed in this paper shows that it is pos. -1 to design specialized methods
for the formulation of the equations of motion of minimal order for general multibody
systems by solving the kinematics efficiently. This is achieved by regarding the incuvidual
kinematical loop as the main building brick of the modelling, and developing appropriate
solution schemes for the 5olutions of its local kinematics. Subsequently, the kinematics
can be incorporated in the general dynamics procedure, supplying the algorithm with the
necessitated terms. The advantages of the approach lie in its possibility of yielding compact,
efficient code for systems of virtually any complexity. This is demonstrated by examples
ranging from combined wheeled and legged vehicles to complete passenger cars. Also,
its implementation gets increasingly simpler by using modern programming techniques,
as object-oriented programming and symbolical formula manipulation. These features,
together with new possibilities arising with the advent of faster hardware, make it feasible to
use the approach e.g. for incorporating complex models of mechanical systems in hardw.re-
in-the-loop applications.
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NUMERICAL INTEGRATION OF SECOND ORDER DIFFERENTIAL-
ALGEBRAIC SYSTEMS IN FLEXIBLE MECHANISM DYNAMICS

A. Cardona M. Gdradin
INTEC 'CONICET/U.VL) LT.45. Unv. of Lzege
Gt7emes 3450 Rue E. Solvay 21
3000 Santa Fe B-4000 Liege
.-IRGE"TIN.4 BELGIUM 1

ABSTRACT. This paper studies second order accurate methods to numerically time-integrate
the equations of motion for fiexible mechanism dynamics. The aspects of stability. accuracy.
conditioning of equations and time step control are discussed for the implicit scheme of Hilber.
Hughes and Taylor IHHT)

1. Introduction

The equations of motion for a constrained mechanical system present the form of a mixed set
of second order differential and algebraic equations called a system of differential/algebraic
equations (DAE system). This kind of systems present particular characteristics which
difficult their numerical treatment and difference them from systems of ordinary differential
equations (ODE).

Probably one of the first approaches researchers have followed to solve a DAE system
is to transform it to a system of second order ordinary differential equations (ODE). i.e.
by differentiation of constraints or by using a penalty formulation. Actually. one popular
technique in mechanisms analysis consists into differentiating constraints and introducing a
stabilization term [1]. Then. the constraints are not satisfied exactly but oscillate with given

Yit in the long-time. The inconveniences of this approach are that the solution depends on
some rather arbitrary constants to be selected by the user, and that the constraints are not
verified exactly.

Gear. Petzold et al [2-6] developed a nurrarical theory of DAE sysrems. They showed
under which conditions the use of integrators developed for treating ordinary differential
equations may lead to acceptable solutions when applied to differential/algebraic systems.
They advocated the use of techniques based on backward differentiation formulas to solve
DAE systems. leading to schemes which preserve sparseness and are easy to implement.

Constrained dynamics equations can be seen as formed by two coupled subsystems: the
first one describes the structural part. while the second subsystem describes the constraints
acting on the structure. Thus. numerical algorithms for integrating these systems should
be able to cope both with the structural part and with the constraints. In this sense. it
seemed natural to us to look for an algorithm within the vast series of methods proposed to

solve structural dynamics ODE's for oyer 30 years now (see [7] for a review on the subject).
and introduce eventually to it the necessary modifications.
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-:ructura, divnanucs equations are a et of second order differential equations %%d T itte
:)ecuiuaritY oi being -tIf. i.e. tile qYstem eigen! .requencies are distributeci o~ar a broad
:reouencv rangze. Stiffness is produced either b the physical properties of th e 'sern
or D. the numerical technique followed to do The spatial discretization. For tills reason

cructural dnancs analosts seA algorithms which beniefit from uncondtionai srabllltv

properties. wich mpiy that the algorithm is stable regardless the relation between time

-tep value and frequency of the oscillator. One-step methods are preferred to multistep ones.

Mice they are self-starting. The cost of evaluating functions can be very important: thus.

miethods with a single function evaluation per time step are also preferred. Fully backward
difference formulas may introduce an excess of artificial damping in the interesting part of
the response. and tend to vield better results in first order than in second order problems.

Many well-known algor:thms of numerical analysis are not used in structural dynamics
because they do not possess one or the other of these properties (i.e. Runge-Kutta. Adams.

Gear....). The most popular family of algorithms for the solution of problems in structural
dvnanucs is probably the Newmark's one [8]. which is based on the interpolation formulas:

q,-= q. - h4, - .- [(1-23) 4n + 234,,+l)

=4 + h[f(i-7)4n + 174n-~li

where 3. 1 are the parameters that control the behavior of the method. Second order

accuracy and unconditional stability, without energy dissipation in tl'e whole frequency

range. is reached by the trapezoidal rule (3 = 0.25. y = 0.5). For any other couple of
parameter values, the algorithm accuracy falls to only first order.

The Newmark familv has ser-ted as the basis for the development of many other algo-

rithms. Researchers have tried to incorporate properties that ameliorate the performance
of the algorithm. For instance, unconditional stability is not maintained for all nonlinear

problems existing evidences of trouble with softening materials. One way to circumvent

this inconvenience is by introducing some numerical dissipation at high frequencies in the

algorithm, matching in some sense the real behavior of materials and structures ;9-121. An-

other recent proposal to warrant stability in the nonlinear regime are the so called "-energy
conserving" algorithms [13-14].

However. there exists wide concern in structural dynamics that algorithms of integration

should provide at least a small amount of dissipation at high frequencies. A number of

modifications of the classical Newmark time integrator have been proposed. introducing
high frequency dissipation while retaining second order accuracy. Within these methods we

can mention the a-method of Hilber [9-101. the aB-method of Bossak f11l and the method

by Hoff and Pahl [12). This aspect has been found of upmost importance when solving

a differential algebraic systems [15-17). The trapezoidal rule presents a weak instability which

is excited for all values of the time step when applied to DAE's (the scheme becomes

unconditionally unstable !) and numerical dissipation reestablishes stability to the scheme.

It should be noted that this observation coincides in some sense with that of Geai and

Petzoid. since backward difference formulas completely filter-out the high frequencies.
In this paper. we discuss different aspects of the implementation of second order accurate

algorithms for the integration of the ?quation of motion in constrained dynamics systems.
We analyze first the system equations and determine a set of equivalent characteristic

equations. These equations serve l .. r to analyze stability and accuracy The application

of the implicit algorithm of Hilber. HIugh.s and Taylor (HHT) to the solution of constrained
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naaiics stems is tudied anG the aspects of Slabiir. coitioning ol equations and
"rechion are anavzed mth detail.

2. Constrained Dynamics Systems

2 1 DERIVArlON OF THE EQUATIONS OF \IOTION

The general form of the dynamic equilibrium equations for constrained d% namic s% stems is
The iollowing: n equations goerning the d.namic beha%or of the system. supplemented by
in constraint equations introduced using the Lagrange multipliers technique.

{ M4 - BTA - G(q.q.t) = 0

4(q. t) = 0

with M the structural mass matrix. G the nonlinear forces vector embodying both internal

and external forces. P the nonlinear holonomic constraints vector and B = - - the matrix

of constraint gradients (in a more general framework. we could have also included non
!iolonormc constraints). This is a semi.explictt system of second order dufferentzal.aigebraic i"
equations. in the terminology usually emplo ed in numerical analysis.

Our main objective in what follows is to stress on the specific difficulties encountered in
the time integration of second order DAE systems characteristic of constrained dvnamics
systems. First. we will assess linear stability and convergence by analyzing the behavior of

the integrator for the linearized homogeneous system of equations:

[X I]~ + [q = {O} (2)

it h S =7,q the tangent stiffness matrix.

We will assume that results obtained from the linearized anal vsis can be extended to the
nonlinear case without any further proof. Interested readers are referred to V for a more
rigorous analysis. Some practical aspects of equations conditioning and error estimation
for the full nonlinear case are discussed In sections 3.3 and 3.4.

We shall assume that the linearized system (2) is solvable. Solvability for a hnear system
like this will be characterized by the requirement that the matrix pencil

[M 0] [S (3) 7{, , f(A) = A . (3) .:

be regular. that is that the determinant of the matrix function f(A) is not identically zero.

We will also assume that the mass matrix M is positive definite, which is a reasonable
assumption in structural dynamics problems. However. note that if this assumption is not
verified, we may consider instead the following modified problem

[M 0{} s A (4)

where M" = M+BTB is positively definite for olvable systems. It is easy to verify that the
-olutions to both DAE systems (2) and (4) are strictly equivalent, since by differentiation
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or con5traints x~e are awle to '%errfv that the cormuted acceierations 7,iiouid iie in tite kernei
of B~B sas rmoae'vrfe htte correstordine miatrix nenciis are strictly

QEIGENVALUE PROBLEM FOR A CONSTRAINED SYSTEM

The homozeneous imiear dyniamics systemn leads to the followina associated eimenvaiuie prob-
lemi:

KMo]~}= S -B

The first (n - or1 solutions of (5) is a set of finite frequencies .;2 wvith eiseenvectors
Tuc tht veiieh eqain of constraint and gives the corre-

sponding force of constraint. Next we show that the rest of the spectrum is composed by
in couples of frequencies - x and - x associated to a unique eigenvector ( 0 " e" T with
e, beincz the unitary vector with a 1 at the r-th row. Therefore. the eigensvst em 1 .5) admits
the following n -- in solutions:

{(.2{~}) (~.m{ ~0

Proof.

We introduce a small parameter S into the eigensystemn in order to eliminate the singularity:

B~ making the transformations

and by considering that ~< 1 the eigenproblem (7) is transformed into the ergensystemn

' 0\1 = 10

Solvability of the DAE systemn assures that the matrix of constraint gradients B is well
determined (its rows are linearly independent): then. the rank of B3 is n? arid there exist

(n - mn) linearly independent eigenvectors with frequency 2- = 0 (which correspond to
the already mentioned (n - in) firite frequencies of (5) (

We will now compute the 21n eigenvectors of -.on-zero frequencies. Since the mass M
(or the modified mass M') is positive definite, we can express. froin i9-ai, that

* = -~ (10)
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Aftier repiacinz the latter e(!iation into 9-b). we get the n2-dimensionai fourth order
auxiliary eieens'stem:

1 - B = 0 (I

'The solution of (11) is given by the following 2m eigenpairs(11,,12 .V1 -1, .V -,12. v , .... V-,, , . (12)

Sxith v, normalized to give:
VTV

vTBM-'B T v, = ,1(13)
By now using equation (10). ,ve obtain the 2m solutions with non-zero frequency of the
eigensystem (9):}w') (-) f w}) (2. f w) r( (14)

txv1 v"vJ (14)
w h e r e - B v q

w i - M -I r , r ( 5
Using (8) we see that the full eigenspectrum of (7) is given by the set

Finally, by making s - 0. we see that the eigenspectrum of (5) is composed by (ni - m)
finite eigenfrequencies , plus 2m eigenvaues that tend towards plus and minus infinity. '
The latter values have associated only m linearly idpnetieneorsanngthe ,
subspace ,m of Lagraage multipliers: then, by linear combinations between them we obtain
:the full set of solutions (6). '

Remark: " '

. Infinite elementary divisors of the matrix penciI f(). The -infinite frequencies'" we ,.
have found for the constrained dynamic problem (.5) are in fact infinite elementaryV divisors of the regular matrLc pencil f(A) [18].

:2.3 CHARACTERISTIC EQUATIONS FOR. CONSTRA-INED DYNAMICS SYSTEMS

Usually. the analysis of any integration method is made by following a two steps procedure: :
ji) reduction to a SDOF model problem: (ii) analysis of the equivalent SDOF equation.

' However, since the corresponding undamnped eigensyvstem does not have i +~ m) linearly
independent eigenvectors, we cannot transform as usual the equations of motion into (n +r )
independent equations. We demonstrate next that the linear DAE system (2) can be made

; equivalent to (n -in) single DOF equations plus m systems of 2 equations with 2 unknow.ns
-of the form : ...

i~~~4 ni ~f

(=0 = 1 .... n-'m

t + - = 0 i = l .... m (
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Proof:

Let us consider thle following set of (n -i vectors

!,,

* 'r

I2
0 0

These vectors are linear independent and form a basis. Then. we are able to expand the
solution of (2) in the basis '4:

q =,ty .(19)

We project the system matrices onto 9 to get10 0 0
< (20)

pr and AfeAon o

where A is an m x m symmetric matrix with coefficients e s
a~y= wSw;= vBM-'SM-'Brv,, ('1.

with 77i, i = 1. m the eigenvalues of the ase'llary problem (11). and where S12 is a diagonalmatrix formed by the squared elastic vibration eig~nfrequencies. We see that in this basis
the equations of motion are uncoupled into elastic deformation and constraint modes.

The constraints subsy;stem can be further simplified Ly similarity transformations (i e.

pre and post multiplying by T*. T. with T = -/ ).After doing so. and by -

A 01"'~'[[- /2] 122

appropriately scaling and reordering equations and variables. we can build new matrices
%F'}. %F over which projection of the system matrices yields the result:" ;

t T [M 0] 1 0,
'P 0] 0 ::"

,1 (22)} " '

P'Lr ~ ~~ ~~ 01a
=  

,: ,,:7

.~~~~ ~ T 0...- 1 ..,,.; ,.:,. : ,, - -- -: ,''t..'~ ~ ~~~~~~~ - B.'. .. ,. ..,,: : : .,
•
: . . . :, , : '" .? :
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Then. the behavior of the time intesrators when dealing with constrained dviiainc ystems

is characterized by their ability to treat a system of the form 1 !7.

I Remarks:

RemkA matrix N is said to have nilpotency index v if N' = 0 and N - ' 0. The
preceding section has shown that t'he linear DAE system (2) is equivalent. through
appropriate transformation matrices *1. and %P to the quasi-diagonal system of
differential equations

r +

where N = Diag(N.N.....) is an index-2 nilpotent matrix and N2 is the index 2

canonic nilpotent matrix . Usually. the degree of nilpotency of N is called the

indez of the (second order) D.4E system. The system written in this form is called
canonicat quasi-diagonal (Kronecker) form (18).

a An alternative (and easier) way to compute the index of a DAE system is by successive

differentiation of parts of the system (e.g. the constraints) up to transforming it into
a system of ordinary differential equations. The minimal number of differentiations
needed to get an ODE system is the index of the DAE (6).

e If the system equations describe also some other phenomena. like for instance system

control laws. the nilpotency index can be higher. Thus. in a general case we can be
faced to systems with index higher than two.

3. Implicit Time Integration of Constrained Dynamic Systems: the
Hilber-Hughes-Taylor Algorithm "

The integrator to be selected should be able to correctly integrate both the --structural"

and "constraints" parts of the DAE system (1). A
Several integration methods exist which have proven to give correct answers when deal-

ing with structural dynamics equations, that is which solve accurately stiff second order 4
ODE's systems. Explicit methods are recommended when high frequencies dominate be-

cause relatively short time steps are required. For the low-frequency response of multide-

%.: gree of freedom systems. implicit methods with controlled numerical dissipation offer the
advantage of suppressing the high-frequency modes of the numerical model which do not

contribute significantly to the physical behavior. The numerical effort can thus be reduced
without loss of accuracy by using large time steps.

The method of Hilber. Hughes and Taylor (HHT) is an implicit method widely used

in structural dynamics. It consists on a slight modification of the Newmark algorithm.

incorporating algorithmic dissipation at the high frequencies and retaining second order
accuracy. The integration formulas can be summarized as follows, in the homogeneous

- -. >J<2" LK, > -" 17 . - .17
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Parameters a. 3. control the accuracy and numerical damping of the algorithm. In order
to get second order accuracy. the following relations should be verified:

1 4
F Ileaving only one parameter free which takes values of interest in the range -0.3 a < 0.
* Numerical dissipation is maximum Ifor a =-0.3. and for a =0 the canonic Newmark

algorithm without dissipation (3= ) is recovered.

*~ 1 3.1 STABILITY ANALYSIS

. The Hilber-Hughes-Taylor algorithm is unconditionally stable with second order ODE s.
for values of the parameter a lying in the range [--0.3.V0 and 3.-1 computed according to i

DAE system (17--b). and see that not every value of a leads to stable computations.

W~e first regularize the system by introducing a small parameter that eliminates the
singularity of the -mass" matrix:

0

=0 (26)
1 0i Z,

We make afterwards the change of variables:

Y 4= n (27) -

with

I 4
'R[ 1  i (23)

such that the following properties hold

-1 [0 / 0]R

0.' 11.
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{2 +l 2
where~W .+I ~=-1s
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= ~~ ) A(fl1 ) 1~~ 0 ~ ~ (2
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Retrarks"

W \e iee thatatrix B affects the coiaputation of values Z,. which correspond to the
Lagrange multipiers amplitudes. This equation seems to indicate that in order to get
stable results. powers of tlie amplification matrix A., should necessarily go to zero to
balance arowing of the factor in thie ierm in itA- B).

Note that there exists a clear uncoupling between Lagrange multipliers and principai
variables. reflected by the particular structure of the ampiification matrix A. Previous
computed values of the principal variables Z, influence the value assumed by the
Lagrange multipliers Z2 at the current step. but the previous values of Z., do not
influence the present value of Zi.

In the particular case of the HHT algorithm, the amplification matrix relating the state
vectors computed by the algorithm at t,+, and t, can be written in the following form:

h4,,+, A "', 38)
t~th'qn.l i~q

where

~A (= 1 -~ + Q W S1 2

1 (-3) (39)
[ 0 -(1+ o)" (I+ a)(3"- )f

and e Q - h.
ILie amptlicauon matrix at infLnity is directly deduced by computation the limit when
- . giving:

F a- : 0 0

-- 4-

where we have replaced the optimal values of parameters 3, Y in termb of the dissipation
parameter a.

An analysis of this matrix gives the three eigenvalues:

1++A, = .- A. . = l-o (41)

Foro = 0 we get the algorithm of Newmark. Since in this case we have two eigenvalues
of modulus equal to one with only one associated eigenvector. there will be some elements .

of A' that grow as O(n) when n *- oc and the algorithm will diverge (see its Jordan form
below). For the other values of interest of a. for which the algorithm includes dissipation , -

at fl - x. stability is recovered since the eigenvalues A,.= 1.2.3 are imaller than I in
mod-- (a < 0).
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Remarks:

aThe Jordan formn of A,~ can be computed by projection of the amiplification nmatix

AOno L.IV.WL=

~~ 0] ~

.Z 2( +4a) 0 ]0
giving

J, WI.AW = (43)

L 0
*The same procedure of stability analysis can be generalized to constrained canonic
systems of any nilpotency index. To this end. define the index v regularized matix:

'00 ... -

N( 0 1 0 0 (44) 1'
S10]

and verify that the change of basis itrices

R I os L+ i i
043)

Lt.~if - V . "

transform the original system into the uncoupled equations
I + 4i0 1 1.2.... v (46)

with

l; COS L i sin) (47)

The amplification matrix of the HHT algorithm verifies, for v arbitrary

limA(!cos-+isin~)) = A_(48)

Then. the global amplification matrix obtained after coming back to the original
variables reads:

B, A,

A= B2 B, A- (49

[B.. B1  A ~
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;%nd the scheme is shown to be stabie for arbitrary index v whenever a 0.
3.2 CONVERGENCE OF THE ALGORITHM

The Hilber-Hughes-Taylor algorithm is globally second order accurate tiocally third order
accurate) for becond order ODE's. with values of the parameter a lying in the range -0.3.01
and 3.;. computed according to equations (25). We will now analyze the convergence of the
algorithm for the characteristic DAE system (17.b). First we regard the local truncation
error and see that high index systems could be eve,locally divergent. However. we show
afterwards that results are globally second order acetirate (after several steps) when using
constant step size and whenever the loads verify enough regularity assumptions.

Remark:

je It is easy to verify that the exact solution of the algebraic subsystem can be written
in the form:

:~t (0 )
'=

where V is the nilpotency index of the DAE system. Note that the solution depends
only on the current value of the loads and derivatives: note also that if the load is[ j differentiable, but not continuously differentiable. z can be discontinuous.

3.2.1 Local Error. Let us now compute the local truncation error of our integration I
algorithm when applied to this system. i.e. the error of integration supposing that we start
the step from exact values at timee 

The difference formulas of the HHT algorithm can be written: •

h2.
z+= z(tn) + hi(tn) + -z(tn) + AZ

* 'V'
i , = i(t() + . I- A Z 

t( 1

where zlt, .(t,). i(t,) are the exact values at time t,. Exact values at time t,., can Le
computed by adding error terms:

Z(tn+l) = Zn+1 + e: n

i(t,+i) = in+i + 3-e:+n+1 + (

i(t4+ 1 ) i.+2 + -Ie *+ e: .

Here. e: is the local truncation error (in displacements z) at t,+,. while r: and T'- are A"4"

the discretization errors introduced by the approximation of difference formulas to compute
velocities and acce'erations.

1 The algorithm advances one step by solving the weighted equilibrium equation:

, N ~i(t.t)_ I e: .+,- ,r) +-(1-1,0)(zlt +t)- e: + 0) akzlt )- (l+ o l f + 1- o f - 0 . ',

(.53) "-- *,*fr
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By taking into account that the equilibiumn equation is exactly verified by actua %aiues
i z~zit. ,. zlt zl i.e.:

C.. Nz(t.. 1 ) tt- - = 0 54

f %%e eet the folowing equation for the local truncation error at t.,:

(1
( -1 011 e.n+i = -aN(i(tn.i-(tn)) Nl- ,15)

Next. we eliminate ..z between equations (.51-al and (51-c). and between equations 1.51-
b) and (51-c i to get:,

= i(t") W

it"+,) = .(it) + _L z(t,+)-z(t) - hi(tn) - .--i(tn + 1"

and using a Taylor expansion of the displacements z(t,+,), velocities .(t .) and acceler-
ations i(taj) around t, , we get the expression of the discretization errors 7:.T- in terms

* ' of the third derivative of displacements at t,

-- h-(t.) + O(h3
"

(57)(\_* 3)h(t,) + 0(h2)

Therefore. the local truncation error at t,+ is given by the expression:

N + ( c)l e:.+ = - a- -L(5)) t
* 13h2 j 3J

After solving this system. we get

( 6 3 (l+o) h 3h-(1+a)) N'(tn) =

0/ (59)
h'-, I (t,))=- 1 h' l ' 1  -.(t~ l )

63(l +a) Th iI'

Thus. we see that the local truncation error for the i-th component of z for an index-v DAE
system is an 0(h s - '2) (except the first component which is verified exactly). Note that for
systems of index higher than 2. computed values exhibit a divergent behavior.

J.). 2 Global Error. It is well known that for-ordinary differential equations the order of . .

the global error is one order smaller than the local error. For instance, the local error of

5..'-, .;5.,a ,, ",] %
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the HHlT alaoritan bei OWh). then this algorithm is eiobMINy second order accurate for

Althought the local error estimates show a divergent behavior for algebraic svstenis, with

index equal or hisher thtan .3. when applying the algorithm with constant step ;ize the
niobal error reaches second order accuracy after several steps (tile same observation holds
for other integrators used for DAEs. like BDF i6l).

We analyze next the global error of the Hilber.Hughes-Taylor algorithma for anl inidex-2
algebraic system. Let us define tile vector of local truincation errors e which consists on the
displacements. velocities and accelerations errors:

er = (c- i he, i hle--1  t. 2 he- 2  h2ez 2 (60)

The vector of local truncation errors e verifies tile equation

Z'X.1  Z(t,,) -:- -en 6

where ZMt = :(t) h ',(t) h2-::,(t) z2 (t) h,42(t) h-'::(t)) is the state vector of exact
values. Ais the amplification matrix of the algorithm (36) and L,, is a vector that depends
on the applied loads (f 1 (t) f2(t)) 7' By using the exact solution (50) into the latter[ equation, and by retaining higher order terms than in the previous subsection we can show

tha v_ ()t)+ 1f(N + V3 fl(5(tn) 4.V1 f~
3
"(t") -0 (62)

where

00

1 - - V~I (1-__ - ) h
It -) i)hh4lJ~+I ,

J 6) It h C

0
js 0

.1. 10
V3 P~)h V4 =0 0

6~K 0OlI'a=hO 4

1) h3 -3) 0

By subtracting from (61) the integration equation in terms of the approximate values
computed by the algorithm, we get the expression for tihe propagation of errors:

*1 k

=,+ AE, +e,, A'Eo + e. (64)
* k=O
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withE=(E. hEz. h2 E:l E.2 hE. h2E-:2) theglobal errors vector.
If we assume mild enough conditions (i.e. smoothness of the applied forces and their

derivatives), and since T' 0 for n - .we may write that for -) 0

& E -- - '(Civi C2 ':v. + C3v + C4v 4 + 0)

k=O

The amplification matrix of the index-2 algebraic system was given in equation (36).
Note that for this matrix.

kZ /k=O x0 AO) 0-,k k k
k0k=Ok =

For a < 0. the amplification matrix of the algorithm verifies

_- -4

ZA"c (67), =o 0 -1- J

(this series can be easily evaluated using the Jordan form and projectors WL. WR (42-43)).
i , ,After replacement into (66) we get

1+ 0 00 0 0
[l 0 0 0 01k C 0 0 0

k-0 I -- - 0 (60
0 [ 0 0 -1 1

0 0 0 0 -

Finally. replacement of (68) into equation (65) yields the expression of the global error
of the algorithm

C-3h 3

Ch (69)

f~~- 1*32 h

where constants C, differ from those in equation (65).

Remarks:
a Similar estimations can be obtained numerically for higher index systems.
* The global error estimates are correct provided the time step is kept constant and

loads and derivatives are smooth enough. Changing the step size. or introducing
a discontinuity in loads, generates a perturbation which affects the computations
for some steps. After a whtile this perturbation is damped out and the results gain
accuracy.
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3.3 CONDITIONING OF EQUATIONS

The system equations in their original fozm can be very ill conditioned. thus causing diver-
0ence of the Newton iteration due to error cumulation. We analvze next the DAE equations.i.by regarding again tihe full system representation. and look for a way to improve the systemn

Scondition.The HHT algorithm can be written in the form:

Find Aq such that:
i i. h-'..

qn+l +qn + hn + 7-qn + Aq

4,,+1 4n +h4, Acl(70)
• 1

f , : 4.+1 = 4 ni + -p. q

M4,+, + (1+o)G(qn+) - aG(qn) - (I+o)fn+l + of, = 0

Equation (70-d) depends nonlinearly on the generalized displacements vector qn+,. Thus.
a system of nonlinear algebraic equations has to be solved at each step to advance compu-
tations. This system of equations is solved iteratively using the NewtonRaphson method.

At each iteration of the Newton method. a system of linear algebraic equations is solved. !
e € Let us write this system for a typical iteration. i.e. when going from iteration k to iteration

k T [ 1

where ( 1 k T 7k- )T is the residual vector at iteration k. and where we have taken into

account the presence of holonomic constraint equations.
The inverse of the coefficients matrix for h - 0 can be computed in tile form:

(+J-B [sqq s (72)

wtn Sqq = 3h" M-i - M-BT(BM-IB')-IBM
-1 + 0(h 4 )

1 )-

SqX = 1 )M-lBT(BM-IBT + 0(h2 )i (73)

S =.\ -- a1 (BM-'B") - ' + 0(1)

We can see that this coefficients matrix is very ill-conditioned due to the presence of
constraints (the condition number is an 0(7?2 /h 4 ). where "7 is the mean mass of the

I system). If we try to solve this problem without scaling, the Newton algorithm will not

converge since round-off errors would become of the same order of the Newton correction
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A better conditioning of the' coe'fficients matrix can be reached by solving the synmet-
ncally scaled problem:

M4 \fa/ B"- G(q.4.t) = 0
(fac 174)i fac 4>(q.t) = 0

pi -
where the scaling factor fac is equal to i/h'. In this way. the condition of the coefficients
matrix becomes independent of the time step and of the mean value of mass. The new
system of equations to be solved writes:

3h 0 0 -B" /i i(L1 [M +1 ~ 1  - 011A~l P~
with h =

B- = LBh= (76)

The drawback of this technique of equations balancing is that the scaling factor depends
on the size of the time step. posing some practical inconveniences from the point of view
of programming. We have also obtained good results using as scale factor a mean value of
the stiffness of the system. Nevertheless. it should be noted that in very severe cases for
which the time step is highly reduced the algorithm may fail and the user has to restart
computations and increase this scale factor.
Remark: *.

* 'The Newton iteration is stopped when the norm of residual vector becomes smaller

than a given threshold. The stopping criterion is based on comparing the residue to
characteristic measures of force fch (for ry and of displacement tcha (for 170). Note
that in order to be consistent. the threshold value for the constraints equations should
also be affected by the scaling factor. Thus. the convergence criterion may look like:

U'lII =< TOL~qi (77)
f r] +  -1 tchar fchar +  char

If we do not scale the constraints threshold. the convergence requiremencs will be too 4
stringent and the method would fail to find a solution.

S4 CONVERGENCE ANALYSIS FOR THE FULL SYSTEM

' } An estimate of the local truncation error of the algorithm evaluated for the full system wiltl :,t'1 be used to determine the new time step. The difference formulas of the HHT algorithm

areas indicated in the preceding section. The weighted equilibrium equation is solved
iteratively in the nonlinear case:

M (rn+) - en+1 1,4) + (1 +)G(q(t.l,) - en i oG(q(t,)) ,

-•)fn~ 1 + -f= 17__________________
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In this equation Yj are the unbalanced forces remaining at the end of the iterative cycle
used to solve the noniinear problem (typically, a Newton method is used). The nonlinear
forces vector evaluated at (q(t,+ 1 ) en+~1 )can be expanded. to a first order. as
IiG

G(q(tn,, 1 )en+ 1) G(q(tf, 7- e,+,1  + 0(e2 ) (79)

IiAfter replacing this expression into (78). and byN taking into account that the eqluiiibrium
equation is exactly verified by correct values q(1k). q(tk). 4(tf). i.e.

M4j(1.+,) + G(q(t,,+1 )) - f.+ = 0 (80)

t ~and by replacing the expression of the discretization error -Tq. we get the following equation
I' for the local truncation error at t,+,:

(1 Ifw [1 OG + 1 ,, -L h 4 1-t7 (81)
Oq h2jn63

Iwenow compu'te explicitly the contribution of the constraints, we get the following system:.

[M ' 0 1a + (1 + a J -

~ ~. .~ -7~r {(+a~)IzM (tn} -(82)

After compliting che inverse of the coefficients matrix (equation (73)), the truncation error$
can be expressed ab follows:

e, i MI'BT(BM.1BTF'B] {(1+ a)a -~)3( i h3h2M-'17q}+

I ~ M -1B (BM-IB 173N

- =0(h 3 '(tJ) + 0(h2/T1)171 + 0(h2 /T17 8

= ~ ~ ~ ~ ~ ~ f~ " +h)~:t M- V(
3 ii)l +7, +(

2 71

scld y(h 2 f (equation( 7)) we get(he2olown7 etiaios7o te1om7f'h

truento eronsinderm ofa the tolerance for the coustrofeintsrifresiuinteNw iteation

I~e~~ (h3 ) + 0(1) fch,, TOLeqi(84
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A The truncation error for the Lagrange multipliers is obtained by multiplying 0 4-b by the

scale factor (7U/h)

Thus. we see that the equations balancing only affects the Newton iteration and does not
have any effect on the accuracy of results.i

Remark:

* We have seen that the accuracy of displacements is not influenced by the truncation
error of the Lagrange multipihers and that the main factor that could deteriorate
the displacements convergence rate is a loss of equilibrium at the Newton iteration.
Indeed. equation (83) points out the relation between the integration error and the
loss of equilibrium, relation which we will take into account to establish appropriate
values for the integration error and for the equilibrium tolerance.

3.5 TIME STEP CONTROL

The task of fixing the time step size at each instant of the algorithm by the user could be
quite difficult in many situations. noting that

-If the selected time step is too large. the error in the computed response will be large.
masking important aspects of the response. A large time step would also increase
the degree of nonlinearity of the algebraic system. with a consequent increment of
the number of iterations per time step or even giving place to a divergence of the

1$ Newton-R aphson algorithm.
- If the selected time step is too small. the cost to obtain a solution would be increased

with a waste of computer resources. even to the point of becoming practically unac-
.1 ceptable in many cases.

Several techniques have been proposed to control the time step in nonlinear dynamics:
from a comparison of results between algorithms of different order [19-21]:

- in terms of a dominant frequency of response [22]:

-lq7MAq  (6

-after a measure of noninearity (current stiffness parameter. number of iterations ... )
' ~[23]: ,

using the local truncation error (24-27).
The technique we follow to limit the time step is based on controlling al estimate of

the local truncation error of the algorithm. In fact. the step will be controlled based on
mortoring the norm of the .ocal truncation error at tihe displacements terms only. and the

error in the Lagrange multipliers will not be taken into account since their approximation" ~order is worse than that of tihe displacements. °

If we neglect the residue of the Newton iteration. an estimate of the local error is given
by approximating the third derivative of displacements as the difference of accelerations:

whet = [ - M-BT(BM-IBT)-B ( + ) - h) A (87)

with A4 = 4.+, - 4.n- This approximation will be valid provided the tolerance for the
out-of-balance forces is small enough.

f
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I3.5.1 .nalyszs of the Local Error Estimation: the SDOF Oscillator: A standard practice
for estimating a time step in structural dynamics. is based on comparing it to the pe iod of
oscilation of the structure. Usuallv. the time step is selected so that one period is integrated

4 by using 10 integration steps. In this section. we establish a comparison with this criterion
o determine an estimate of the local error that will give accurate results.

Let us consider a linear SDOF oscillator submitted to an initial displacement o:

+ -2 Y = (
Y(O) = Yo 4(0) =0

* Clearly. the exact solution to this problem is

y(t) = YO cos(..;t) (89

Let us suppose we are at time t. instant for which we know the exact solution y(t). and
that we integrate one step the dynamic equations using HHT with a time increment h. The
change of displacements. velocities and accelerations from t to (t + h) can be written in the

form:

hAY =A()-11 -fly0 sin-1t) (90)" " h" APi -fQ2YO cos(wt) :

After replacing the expression of the amplification matrix A(fI) into equation 190). we seethat the local error measured by equation (87) results

i 0 = 1 + I + o )a f/ - sin(,jt) + L- S1f cos(.,;) (91)

IYOI 1 + (1+c~t~ 2 Sf (2~ )cst
The quotient e/lyoI can be seen as a non dimensional error. independent of the oscilla.

tor excitation. Note howe,'er that this measure still depends.on time. To eliminate this
dependence. we define the t;p,-t-d value of the non dimensional local errr o in the form:

' f =E[e] lUmT_ L} C2 dt
40 =ll(92)

Using equation (91). we call see that

, (1 + cc)[(,. + O)a- 13 ( (1 3)-2 S12),
/2 ((( OO)2 (93)

This function is plotted in figure 1. We can see that it is a monotonically increasing function -iof the Pon .iimensional frequency fl.

Remark: f t n n c f""
W We can appreciate also in figure 1 the non dimensional cut-off frequency Q It
indicates indirectly the maximum value of the time step h to integrate accurately the -
equations of motion of an oscillator of frequency -. It is usually accepted that for a
non dimensional cut-off frequency r1it = 0.6 -vpJue corresponding to a time step equal
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~~Figure 1 - ?Von dimensional error function 6(Qi) "

tooetnth of the oscillator period- the algorithm gives enough accurate results from •
• ~an engineering point of view. The minimum spectral radius at this frequency equals li

p(0.6)1,=_o.3 = 09981

Let us define the constant En = '(SIR). From the definition of SIR. the quotient

C(fi)/Kn will be greater than or equal to 1 for values of frequency exceeding fiR. Therefore.
if we accept that the expected and actual values of the local error are equal (in mean), we
can write:

(1 + o)3 - V] Efe] 5(9) > 1 if Q > QK{1 (94), I I/ Rn IYO1 =  ' < 1 if f? < OR

Then. by integrating the differential equation (88) with a time step that verifies:

!t'. Iq~l I[A91 5 1 (5

the time step will be adjusted. in mean. to verify fi < SIR. In other words. the time step h
will take values for which the algorithm integrates correctly the equations of motion of the ,
cscillator.

S.5.2 Analysi, of the Local Error Estimation: the MDOF System: Let us compute the
double product of the local truncation error e, with the mass matrix:

T 1/2" .1h
2

eMe) [(1 + )"3 - [ ATM BT(BM-1BT)- Bl A4).

(96)
Since the second term on the right-hand-side is strictly negative, we get the inequality:

e 1: 1 -] h (9.

(e~M9)' 2 ~ (1 ~ TAG)'/
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where AG,, = MA4. Let us tiow define a relatize error function erd in the form

( j R a o) 

where the reference length f = (qTMq0)l/ is a mass-n orm of tile characteristic displace-
ments q0.' ;

The integration time step will be selected such that the relative error is smaller than
a user-defined tolerance TOL,t. Thus. the relative mass-norm of the truncation error of
displacements will bebndy L

; (e TOL )1  
"  < 6,1 < / TOL <,T, O (99)1 0 (q'"Mq0) /

i ~In this way. the time step will be adjusted to integrate (in mean) using i0 steps per period. i

for a single DOF s stem if the tolerance TOL,,t is fixed equal to e. In a tDOF sytem. t
the time step will be such that there will be i0 steps (in mean) per dominant period. See
the remark below for a different interpretation of this criterion. b ti

The tolerance TOL, ei i ndependent of the problem under analysis. Computer experi-~~~~~ments have shown that a value of TOL,,nt in the range 1 0: 0 3 gives correct results

for the engineert with a good compromise between accuracy and economy of computation.
Remarks:

m It can be shown that if the time step is selected such that thven error ear is below
na given tolerance TOL,,i, the sum of amplitudes of modal components exceeding the , .

cut-off frequency K will be bounded by TOLi, dth

ie,,t <5 TOLi t : 5 TOL:., (100)

-' - - -/

i Therefore. TOLi,t Limits indirectly the amount of energy dissipated by the algorithm.
}1 • The estimations above will be valid provided the error coming from the out-of- !
; : ~ ~equilibrium forces is small enough. The following relation between the integration ","

tolerance and the equil*-' ium tolerance is based on demanding ai equ'.bbrium error
" I one order of magnitude elow the error of integration:

~~~The analysis has been made considering the integration of linear systems with an a- -..

most constant time step h. The developed algorithms can be extended to the nonlinear i: .

~~~~case without any further difficulty. > :.

- : i ~ ~ 3-.3.. Strategy for Changing the Time Step : The changing step strategy should be such ,...
• . ~that it keeps the integration step constant during long periods to avoid a deterioration.. °

:. ; ~of performance and to be in agreement with the already developed theory and with the .. :.
i stability and accuracy criteria of the HHT integrator. Therefore. the strategy should try

to keep the time step unchanged unless strictly necessary. "" ',
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ii.pIfthdrie error. Bys thanpn the toeane utigentoferrs ahf itso diffuere acime steth isls tebeij

comute stp btte instante wti eeae try in to meep the relative erroreqatohlte

equal to TOLJ12. using equation (102).
iii. Whnvrthe relative error lies between TOL/2- and TOL/16. we keep unchanged the

time step. This criterion is based on considering that if the time step is doubled. thle
errr will be greater than half the tlrne

iv. If the relative error is less than TOL/16. we accept the step and double Zhe time step.

4. Eape

4.1 CNNCNLOETSYSTEM

This firs-, example treats the canonic nilpotent system of index-3:

N 3i +Z A t)

with loadsepr)-

f= cos(5t)
exp(3t)

The exact solution~ is

( exp(t)

Z(.1) cos(5t) - exD(t)
exp(3t) + 25 cos(.51) + exp(t)

Figures 2 and 3 show the computed displacements with a constant time step h =0.01
* and dissipation paramneter a = -0.3. compared to the exact solution. We notit that

and z:2 are in close agreement fc the exact solution. while :3 exhib-s a perturbation at the -..- 7
initial steps which is damped out after t :,- 0.2. U

Figures 4 and 5 show the evolution of velocities. Note that now. both and -3 are
perturbed at the beginning of computations. Note also that the amplitude of spurious

* .oscillations of l is such that they mask the -response at the subsequent steps.
Table 1 gives the global error at time t = 3 for d~fferent values or the time step. We can

see verify that the error for the first componfrnt is always zero. and that the second and
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thid & ponntsconverge with quadratic rate.. However, we remark that thequdai
rate is lost for the third coiiiponent for steps smaller than h =0.01, most probably due to
round-off errors cumulation.

I MPLEh PEw7::nil ze the respontse of-a simple rigid pedlm h system has unit4
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j Ia =10 gravity field. The system of equations to be solved follows:
i I - 2q,..A = 0*$ !q2 - 2q2A =-10

I I I + q2

The system was solved by using a variable step size. for various erro~r tolerances
(TOL,,t = 0.001. 0.01. 0.1. 1). Table 2 shows the mean time step used in the different cases.together with the effectively computed mean integration error. WNe see that decreasing the
error tolerance by a factor 10 implies almost halving the mean time step. in accordance to
the predictions of equation (102) (actually. the exact relation is 101/3 2.15).

TOLint _____ h
11 0.3071 -, 0.0738

10.1 0.0331 0.0349

I0.01 0.0042 0.0177

30.1
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Figure 9 -Time step evolution.
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DIFFE@RENTIAL-ALGEBRAIC EQUATIONS FOR MECHANICAL

SYSTEMS SIMULATION
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Abstract
The numerical solution of the differential-algebraic equatioro of motion of mechan-

ical systems offers many computational challenges., In this paper we describe progress
t which- has been made in undisadn the formulation of the equations of motion from

the viewpoint of nulmerical stability, outline some of the difficulties which must be re-
so~d om~ffcidtii'reialenuerical methods in real-time simulation of mechanical

systens, and-propoesomne solutions.

1 Introduction

* In recent years muxch activity has been devoted to the development of numerical methods and
underlying theofy 'for t, e solution 601~iffrential-algqbraic, equation (DAE) systems. These
types of systerms odccr ireqiiently as initial ' alue problems in the computer-aided design
and~odeiing-of-iecia itrii~ gubject to constraints, electrical networks, chemically

V reacting systems suc "i distillaibij flow of incompressible fluids, and in many other appli.
catibhs* Dfritial.-lbraic ,i-t'et'-,whichi, in e'qral 'can take the for F't, yy 0,

F i*g6 sym~b ssi gen orm),
systems as a special dase, they also include problims =which are quite d Iifferent from ODEs.

Ifi aseni,th mdre singular a DAE'system is, the more difficult it is to solve numerically.I The index bf a DAE systeiii is a m'eaure of th~degree of singulariy of the syst -em. Roughly
it~in~fg-, ODE siyiteis y f(i, y) are index zero, eqatos coupldwt[algebric -onstrainits, Am= ~y ), 0 9 gy, z), er g/17z is nonsingular, are index a .naddiffeential quations, coupled with algebraicxonsrants where z ca nnot be solved

for unquly a 'a'a fuiiction of- ro index lugerthan one. The~ index can be
defid- als fodr systems which are not eicpressed in the semi-explicit, foimn of- differential
equpations couple witJhaalgebriaic_ constrain'ts.' id~Itiofial difficulties can occur for these
systemsi because the singularity may be rnovingifrom one pgt of the ste toaother.

*This work ws pirtially supported by the U.S. Army Researchi Office contract number DAAL03-89-C-
- (0038 with the University of-Minnesota Army High Performance Computing Research Center, and by ARO

j contract number DAALO3-92-G-0247 and DOE contract number DE-FGO2-92ER25130.
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j Much progress has been made on understanding the underlying structure and numerical
solution of DAE systems. Fundamental concepts such as index and solvability have been
extended to classes of DAEs describing a broad range of scientific and engineering problems.
Convergence results have been given for nu~merical'methods such as multistep and Runge-
Kutta apolied-to several'important clazses of-DAEs. Production-level computer codes such
as DASSL [7] have been employed extensively for the solution of (index-one) engineering
problems. Much of this work is described in the recent monographs (7, 25, 26].I ,There is much still that needs to be done for the effective solution of certain classes of

* DAEs. In this paper we will focus on the algorithms and analysis which are needed for theeffective real-time simulation of mechanical systems. ,Real-time simulation of mechanicalsystems is needed in robotics,.as well as in the design and simulation of vehicles, including

automobiles, high-speed trains, tanks and construction equipment.
The modeling of multibody systems gives rise toEuler-Lagrange equations. Any effective

numerical method for these systems must be very fast and extremely robust because the
systems must often be solved repetitively by design engineers who do not have time to
develop a working knowledge of complex computer software or numerical methods. For
some important applications such as vehicle' simulation and design, the systems must be! solved -ii-real~time.
soEuler-Lagiahge equations are usually posed initially in the'form of a system of differ.
ential - equations (Newton's liws of'In6ibn)- coupled' with nonlinea, constraints which are
enforced via a'L-ra-ge m ultiplitr. Direct discietiz tion of this index-three system yields] nuinerikal'dethdds which are 6ften not very robust'because of well-known[7] difficulties with

error estimation and stepsize control, as well as severe ii-conditioning of linear systems at
each time step and other problems. A wide variety of reformulations of the problem and as-
sociated numerical methods have been suggested in an attempt to find a system of equations
describing the system which can be effectively solved numerically. However, each has some
apl}entz;di-sadIv'tage in terms of speed and/or robustness. Because the constraints aresozietimes highiy nonlinear and hive a strong physical relevance, it is generally considered

important that the'cois':aints, and sometimes the time derivative of the constraints, be sat-
isfiid.vdr- acciurately. -In i ditioh, there e'othe- ipotential diiuties: the constraints can
, c6eiiiide ificdint-or realy rakdefiient, the solutibn may have components which are
oscillating at a-high frequency, nd thereis-the possibility 6f frequent discontinuities which
than 'its' inpzt 'Reil-tim - i"mulation imposes severe requifemeits Ion the solution method.

1Thes6lutio must be computed exrmely rapidly, necesitting the Use of massively paral.lel cniputers. The chalenge formultibody systens is to develop a problem formulation and* I asscited-ass of- tierial--methods 6ich preserves the stibility 6f'the system, ensures "
that thecbfstriats are safiedadapts to possibly rapid or discontinuous changes in the ," sodlution and -tonearlyt rank deficient: constfraint, idaccomplse this tak in ,an absolute

mnmumof copue t inextremel reliably. I n Scin 2,we will outline oercn
. easfble formtation of-the tquations of m6tiii for nimerical solution, and

i.r Section 3 We Mll outline'soeii6 of the fcomputatinal challenges for efficient and reliable
" " numnif -iPmith6ds, and pfopbse soiie solutions.

. .
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2 Stable Formulations of the Equations of Motionj

In this section we will be concerned with formulations and numerical methods for the Euler-
Lagrange equations of constrained mechanical motion. These are systems of the form

where the positions and velocities satisfy p, v E R"P, and M(p) is a np, x np regular (yb-

mercpositive definite) mass matrix, f is a vector o ple ocs n ersnsten
Lagang mutipier orcontrantforces coupled to the system by the nx x n,\ constraint

-rdatrix,-G :=-0418p. These-types of systeins arise frequently in the modeling of multi-
body sytem~ij fo-exmpl invehicle simulation, comouter-aided design of mechanical

systems, and modeling of robotic mniptlators.
I The Euler-Lagranige system (1) poses difficulties for numerical methods in part because

-i sindex-three. In particular, dlirect dfiscretization of (1)'yields nimerical methods which
are-often not very robust because' of thei iell-know~nf7] difficulties for highier-index systems
with eror,.estimation- and& stepsize-conti6l, is will as' severe ill-conditioning of the linear
systems-at each-time-step; and-a-variety of other problems. In addition, for some problems
th constraints can be -poorly conditibned;-in these cases methods applied to (1) and to

- 6me-of its reformulations can -behaVe iinmerically as if they were solving a problem for
-which, the-index- is even higher.

To~overcorne the~pr6bleni~ inherent in the direct numerical solution of the index-three
formn of thi'Euler-Lagrange eqiaions, qite a number of reformulations of (1) have been
suggested; some are- in use in multibody codes [48]. Many' of these formulations of the
eqaih-rebsdb differgniation of the cohitraints. Thie constraints

0= g(p) (2a)
0 = G(p)v (2b)

p0 G(p)O+vTG(p)v=:G(p)6+z(p,v) (2c)

Iare called the -position, velocity, a-nd acehfr'atioR;,evel coistrainis, respectively An index- A
-I two problem can- be (1-) aiid ri tpl b iiicf h oiincntan n()wt

-tevelocity coiistraiiht. The iesulting-pioblem hlas, 'with a'ooraeinitialcodtnsth
- ,same solutions, s()a-i oihteask oilennekly Howeier, the solutions

A:cin-dnft'a*ay from satisfyinig the position conitrantibecause of numerica errors at each -

time .step This~drift is--often considiied'Vunaceptable in ekiniering problems because of
= thestrog phsica~relan~eof t~ pbitio coitris (6hii are often holding components -

-~---together), and because of their sometimes- severe nhiinearity. Anindex-6nie problem can
-~bifozmed-,by~replacing the position constraintli 1 with the ic~ifration constraint. The

resutlting ,s.t-qmts- generally -much, easier to- solve 'un-,'erically, but now the solution, can
- - -, drf -away-from both--thei poition -and velocity cnstraints; the drift -away from the positio ---

-~ constraint can be qfuite iihfliait.
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Various fdrmnulations and-solution pr6cedures have been proposed to deal-with or elim-
inate thie Problem of drift. Gear and others [22] have suggested that instead of replacingI

A ~ the Oosition cbnstraint with the velocity constraint, both constraints -could be explicitly

enforced by means of an additional Lagran~e multiplier. This leads to a system of the form

v -GT(t, p)p 3a
AM(t,p)b = f(t, p, v) GTt) (3b)

!0 = (3c)
0,=G(p)v (3d)

the resulting -problem is index-two. There is a siniflar formulation which enforces addition-
Jy the a~cciliiiatibn constraint by means of yet ,another Lagrange multiplier. These types

ol systems are generally -called stabilized formnuiptions of the Euler-L~agrange equations (as
opposed to the unstibiized forms discussed, ealied-or which there ma-y be drift). Although

t-biliied f6imiatiori qulte cleverly eliminate the drift problems, we-have unfortu-
hintelIy founhd 'in reciht numderical-expieriments -that most ODE methods (including BDF

- ~ ~ ~ ~ ~ ~ ~ ~ ~ -an otinlctDig-ut)api~vry inefficient in
-certain- stitinfr j ample itsystem is heterogeneotts.(includes components with

iwidely dispizite rnissei) or the const nt- orly conditioned.

,j j Euatioi~i) hs T = '-A dgesof, fed MaUing the constraints, we can reduce
4 (1)M localy to a systern of m ODEs called a state-space forM. The choice of coordinates

is not unique;:iHaug and -Wehiage. [52] ,use Cartesian: co6rdinates. The resulting. method is
Icalle d generafired" idinafe partition: aing p t6e code DADS [48]. Potra and

Plhea-ioldt([44, 46 suggest a-different-local pam eriiation. For the purpssoanli,
we will proposge to dfinie an setial undcoyingOPDE,i lich is a certain class of state-space
forms. By its c6nsirixiion, the original constraints are satisfied by a state-space form. The
same set of coordinates may not- work over an entire problem; thus the coordinates must be

j chosen adiiptively.
j Still another possible method for solving theEuier-Lagrange equations consists of ap-

a .1 pending the velocity aiid -ac~leraio cdstfiinti to'(!). The resulting system is called an
overdetermined DAB (ODA B), and has bee-n investigated by Fiihrer[17J and Leimkuhler[l8],
and others[41]. The ODAE is discreizeid by a niumerical method such as.BDF. and the reI utignolnezsstehi iii ved by a Gass-New ton iteration.. In [i8] it is shown that for a

11 ode prble whre he ontrantsarelinar ithcoS94;!ait~roeffitiints and under certain
othr cndtiosthei~tip t th NAE w~ch is dtermined-using a, ceitaintsif-ite ' Uon -

to solve the nlierysn sthsaeatatoandby solving one of the stbize4
fom, nthii-h-se soluti ais are equivai tthse obtfainedby-nuzherically integrating

the-stae-space fom Vrihigthe same dscretization-method. Uhfortuniiel these results do

n~ba~ rto arr oeto hae moee gpnrpose-o-
-Varioni ~ ~ a ote ehd aebe~rpsdo oving the 'Euler-Lagrange equations,

including th reuaizationso auiat[6,Lttet21 Kalaichev anid O'Malley[28J and . .

I b6thers, omiebimes thesereguization can be qte ie varaton of the method' of
pitaumgarte are in- use in many. enginern odesi Uotx unaeii noawayeayt

ck-th re aiation parameters which Work.
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As we have seen, a wide variety of formulations and associated numerical methods have
been suggested frtesolution ofthe Euler-Lagrange equations ofconstrained mechanical
motion. In recent work [2], we have systematically evaluated the formulations and associated
numeridal methods from the standpoint- of stability,-to determine whether some formulations
and methods are inherently better at preserving- the conditioning of the original problem
than others. The basic idea is to define a class of essential underlying ODEs (EUODE).
The EUODE is defined for higher-index linear Hessenbeg DAEs of the form

The Ai, B and C are smooth functions of t, 0 :5t<1

j ,, ..TB(t) en , n and CE nonsingular for each
t ( isaiirestht te DE -asindex m + 1). All matrices involved are assumed to

be # ~ha thune DAE hasm b a constant of moderate size. The inhomogeneities; are

The UOD isderived as follows. As in [1]. there exists a smooth, bounded matrix
funtction~~~ Rns)xt wose linearly independent rows form a basis for the nulispace[f6T (AC b taken to be orthonormal). Thu s, for each t, 0 5 <1,

We assume that there exits a constint-,K1 of moderate size such that

II(CB)-'II 5 K, (6)

uniformly in. t, and obtain (Lemma 2.1 in (11) that there is a constant K 2 of moderate size
such that

:5 K2(7)

The constant K 2 depends, in addition to K1, also on hIBll, IiCII and IiRIi. Let K(3 be a
moderate bound on Rand its derivatives:

I ~ ~~~Define new)IV Kvariables. (8
ne uRX, 0_,t1:51 (9)

-Then, using (4b), the inverse transformation is given by

u Su, (10) -'--- :
whr St j41 x~s-, satisfies

'wer ~~xn-,,, ' RS=I, CS"0 0 1

2 .5~
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andF:= B(CB) (12)

By our assumptions and (7) this mapping is well-conditioned. Bath S and F are smooth
and bounded. The first m derivative.- of S an4 F are bounded by a constant involving 1%2
and K3. Taking m derivatives of (0) J .ds

u(-) =(R.T)(m) [R- 4.( R('")+1 )zj + Rq (3

Using m - I derivatives of (10) we ot .iin the rE-%iO,,-

u(-) = [RAj + ( , OU-1~(~) -(Fr)(''1)] + Rq (14)

The ETP'IDEs ...- Sy~ A are ceit,,% state-space forms which are uniquely defined up to a
bounded, nonsii rular chaig,,e of P! -; It is shown (2] that if the EUODE is stable, i.e.
if its Green'u .~:~ s bounded te -t* c ..ztant of moderate size, then a similar conclusion
I.3lds for the vi. 1~. jAE. Since the ujc~iadedness of the Green's function is invariant
under boi"l.ded,,n. Anigular channts of %;Liables, the quesion of stability ior the EUODEs
is weJW-dfinr.d. ' [2), we uscd -'-. EI2E to investigate bie stability of some of the many
equ.at*,r. rr.; Jlatlon, ft t Euler-" ajrm,3. systems. Wi, found that all of the formulations
preserved hic ti.kb>,; xcept ,rXv..i :R Ir d-, .(tion.

While se' . ' 're'.t eqtutio. c,=- . :-,.tequally preserve the conditioning of
the Euler-! t.rarge eq. . : the properties ..numerical mpthods applied to these systems
are often quiW. dffe:pnt For exampkc, it ic v vii known[71 mfat higher index systems are in
a sense ill-pc'sed,'und t:wi lead to difficulties for cumerical methods with error control, ill-
conditioning of Br~ear systirns at each timec step, etc. For higher-index Hessenberg DAEs
such as the hLuler-Lagrange equations, the- i is a problem with numerical instability for many
methods. Cunsider. for exam~ple, a linear bmognne:,us liessenberg index-two system

z'= A(t)x + B(t)y (15a)
0 = C(t)x (15b)

This system has the ETJODE ' A u:iSu(6

Now 6.scretize with implicit Ente+r B,+y~1 (1a

Transforming back to the variables of the EUODE yields the discretization

au,,+, = u,, + hRASu,,+i + hR'Su, 18

Comparing (18) with the 1.UODE (16) shows that the implicit Euler method corresponds

to a dscretization of the ELIODE which handles the term A'Su explicitly,! Thus, although

AIR
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convergence results[7 ] predict that this method will converge globally to 0(h), there is a
problem with respect to numerical stability which restricts the stepsize when R'S is large.
This problem is verified by experiment; there is very definitely a nonstiff behavior of meth.
ods ranging from BDF to most implicit Runge-Kutta for certain stable linear Hessenberg
index-two systems. On the other hand, it is possible to argue, with a finer analysis, that
under 'reasonable' conditions, this type of numerical instability should not occur for certain
projections (for example, in (17) if B = Cr). The best cure for this numerical instability
seems to be to reformulate the system in a form for which the instability cannot occur.
This is done by reformulating the system in a form where the projection can be controlled,
rather than dictated by the M matrix. In particular, we would like to formulate the system
so that B = CT. We call these formulations the methods of 'projected invariants'. The 4

, methods are constructed as follows:

1. Starting with the original Euler-Lagrange equation, use the acceleration constraint
to eliminate A and obtain an ODE in p, v which has as invariants the position and
velocity constraints:

= v (19a)
= (I- H)M-' f- Fz(p,v) (19b)

where F = M-IGT(GM-IGT) -1, and H = FG.

2. Project the solution onto the desired invariants using GT or other stable projection.
For example, project onto the position constraints: (

o = (I- H)M-f - Fz(p,v) (20b)

0 = g(p) (20c)

3. Note that the above system has the same numerical solution as the following implicit
formulation which can be implemented more efficiently:

-v-G T (21a)

M6 = f(p,v)-GTA (21b)

0 = G+ z(pv) (21c)

0 = 9(p) (21d)

Depending on whether we do the projtztion onto the position constraints alone, or onto
the position and velocity constraints, this leads us to two forms of projected invariants
methods for constrained mechanical systems:

1. Project onto position constraint:

V = (22a)
Mb f(p, v) - GTA (22b)

0= G6 + z(p, v) (acceleration) (22c)

0 = g(p) (position) (22d)
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2. Project onto position and velocity constraints:

= v - GTu - LTr (23a)

MO = f(p,v)-GTA MGTr (23b)
0 = Gb + z(p, v) + GGTr (acceleration) (23c)

0 = Gv (velocity) (23d)
0 = g(p) (position) (23e)

where L = Gv. These equations are studied in more detail in [41] and [3]. There is some
controversy over whether it is really necessary to include the term LTr, however numerical .

experiments in [3] seem to indicate that including this term is advantageous for numerical

stability, in certain cases where the solution is oscillating at a high frequency.
There is also a nice geometrical interpretation for the method of projected invariants -

it corresponds to the orthogonal projection onto the invariant constraints of the ODE.

3 Computational Challenges

3.1 EFFICIENT SOLUTION TECHNIQUES~i"

Virtually all the proposed formulations for Euler-Lagrange equations have a similar struc-
ture with regard to the linear systems which must be solved at each time step. Even the

solution of a state-space form, which at first glance might seem to have quite a different
structure, can be expressed using Lagrange multipliers in a form with this structure (44, 45].
Thus it is important to be able to solve efficiently systems with this structure. There are

several important cases:

3.1.1 Nonstiff

In the nonstiff case, half-explicit methods [26, 33] and/or iterations [18, 22, 43] can be
devised which require much less work than in the stiff case. There is still a linear system,
which arises because of the constraints, to be solved at each time step. However, the matrix,

which has the form M G , has some nice properties: it is symmetric positive definite,

and it does not depend on the stepsize or order of the discretization. Further, linear systems
of this form have been studied extensively, e.g., in constrained optimization, and some of
these algorithms may be appropriate. For example, it may be feasible to update the matrix

or its decomposition over a sequence of steps/iterations by quasi-Newton updates. Using

the matrix as a preconaitioner for iterative methods such as GMRES, the linear systems
would not need to be solved very often. The mechanical systems have a special structure

which can be further exploited; for example, the 0(n) methods [46, 33] can be used to solve

the linear systems. However, this method leads to a recurrence which seems to be difficult to

parallelize[5]. We are studying further possibilities for parallelizing the recurrence. Among
the problems are load balancing and exploiting parallelism when there are long chains. jK
To some extent, it may be possible to use a block cycfic-reduction(36]-based algorithm to f -

enhance the parallelization for long chains. .
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For many systems, for example if the stiffness arises because of a controller, only a small,
readily identifiable part of the system may be stiff [51]. Here we expect that the GMRES
iterative method [47], with the appropriate half-explicit methods as a precondit;oner, shouldI~~be effective.

3.1.92 Stiff

Stiff problems can arise for example in the modelling of flexible bodies subject to constraints.
In the fully-stiff case, the Rlnear systems to be solved at each time step still exhibit a special
structure, but they are no longer symmetric and now depend on the stepsize. For example,
the stabilized index-2 form of the equations of motion (3) leads to the linear system

GT  0

1K M+D 0 GT riI2ID 00 ) =P (1'r31
r G 0 0/ \A r4/

The matrix above is rather large, of dimension 2np + 2nk, and its LU decomposition is
generally dense. If the number of constraints is of the same order of magnitude as the
number of positions, methods which are analogous to the null-space method of numerica
optimization [24] can be considered. At present, we do not have sufficient experience to
determine whether this is preferable to other alternatives. In addition, for flexible structures,
the considerable structure inherent in the linear system arising from the discretization should
be exploited.

We have recently developed some new software for large-scale DAE systems. The new

code DASPK [8], combines the time-stepping methods of DASSL with the preconditioned
iterative method GMRES for solving the linear systems on each time step. There are also
two new parallel versions, DASPKMP and DASPKF90, written for the Thinking Machines
CM-5 in message-passing MIMD and data-parallel SIMD modes, respectively [35].

3.1.3 Automatic stiffness detection

Many problems in the simulation of multibody systems are nonstiff (or involve only a very
few stiff components, as described above). However, stiff problems certainly do occur. A
robust system for computer aided design should be able to treat both types of systems,
hopefully with no intervention from the user. For example, it is possible to construct a
method similar to those whicl" have been proposed and implemented for ODEs [40, 49,
50], which monitors the convergence of the iteration and automatically switches to the .

- appropriate method. To see how to do this, consider the index-two model system

" ' = f(t,y)+GTA (24)

0 = g(t, Y) (25)

where 0g/y/= G. Suppose that the problem (25) is nonstiff. What does this mean, for a
DAE of this form to be nonstiff? Differentiate the constraint to obtain Gy' = 0, and use j
this to solve for A in (25), to obtain .

A= -(GGT)Gf
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Now plug A into the originN.I equation (25) to obtain

* y'= (I- Hf(t, y) (26)

where H = GT(GGT)-G is a projector. The svste'm (26) is often called the underlying
ODE of (25). We will say that (25) is stiff, if (26) is. A test of stiffness in (26) is: if

$ IIh(I.- H)hII >> 1 (27)

for a stepsize h that we would like to use, based on accuracy considerations, then the
problem will be considered stiff.
weHere is how the automatic method switching would work. When the problem is nonstiff,
we would use an ap... ", *,. L ti: eration matrix (or, in combination with iterative
methods, a precondit,oaei) wLdh i . the part of the matrix corresponding to fs,. For
(25), this is:.~ ~ _GT)

A s ! mdc o, = ( ( 2 8 )

As mentioned in the section on nonstiff problems, depending on the structure of the DAE
there are a number of ways to efficiently solve these kinds of linear systems. We start out

* by assuming the problem is nonstiff. When Newton, (or, in the case of iterative methods
like GMRES, the iterative method) with the approximation to the iteration matrix given by
(28), fails to converge for a current matrix approximation, it must be because the problem
is stiff. To see this, note that the exact iteration matrix is given by

0 T

G 0

Thus,

pQ1 I f r-h(I -H)fy 0'P~~m// = , -hM I

whereM = (GG) -1 G. If the problem is nonstiff, then (I-H)f, is small, and the iteration
should have no trouble converging. If the problem is determined to be stiff, the terms in the
iteration matrix involving fy will need to be approximated. Now, suppose that a problem has
been determined to be stiff and that we are using an appropriate (but relatively expensive)
iteration to solve it. How can we tell whether the problem later becomes nonstiff? One
possibility is to monitor l~fli!.

3.2 RANK-DEFICIENT SYSTEMS

It can sometimes happen that the constraint matrix GT becomes rank-deficient or nearly• ' rank-deficient[37, 14). There are a number of possible situations. The matrix G " ran be
of constant, but reduced, rank. This is the case, for example, if you model a table with
.. dfour liegs. T[e7 s e hee Lgrange multipliers are not uniquely defined. However, the

postions and velocities are well-defined [30]. For other problems, GT may lose rank only
locally, and then there are a number of possibilities. In some cases, the positions and

velocities are well-defined, while some of the Lagrange multipliers are not unique. It can "-
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also happen that the solution fails to exist following the singularity. This latter situation is
analogous to impasse points which have been studied in electrical engineering [11, 12].

There are a number of possibilities for dealing with singularities in the constraint matrix,
in situations where the positions and velocities are well-defined. By considering the DAE
in terms of a problem of minimizing the deviation of the constraint functions, subject to
the differential equations, the well-known Baumgarte stabilization can be obtained (42],
for well-conditioned constraints. This derivation also yields a strategy for selecting the
Baumgarte parameter. When the constraints are poorly conditioned or not of full rank,
a model trust-region approach [10) can be used for the optimization. This regularizes the
DAE, introducing a term which is smali except locally near the singularity. Our experience
so far with the trust-region regularization has been favorable; there are some analytical
results to justify this approach. Another regularization has been suggested by Park and

, Clou [37)].

3.3 DISCONTINUITIES

Frequent discontinuities are possible in a multibody system. Some of these discontinuities
will be located very efficiently by a root-finder such as in DASSLRT[7]. However, others may
arise from user-defined functions or other unanticipated situations, and need to be located
automatically and handled efficiently. In the case of a collision, conservation properties 4

of the solution should be preserved across the interface. The situation for DAEs presents
difficulties in addition to the ODE case because the solution of a high-index system can
be less continuous than the input, and singularities in the system can lead to numerical
behavior which is quite similar to that caused by discontinuities. Impulsive solutions are
possible.

3.4 HIGHLY OSCILLATORY SYSTEMS

Often in multibody systems the solution may have components which are oscillating at a
high frequency. This is a problem, for example, in vehicle suspension models. In a numerical
method such as multistep or Runge-Kutta, which are based on approximating the solution
locally, the stepsize must be chosen very small to resolve the oscillation in the solution,
even if the amplitude of the oscillation is very small and does not significantly influence
the long-term solution behavior. We have been working on efficient numerical methods for "
these systems. On first glance, one might think that it would be possible to determine
the local elgenstructure of the system, and then propagate the solution by methods based
on matrix exponentiation. This would have a large cost per step but it could be made
more efficient by using Krylov methods like GMRES to approximate the space of the high-
frequency eigenvalues, rather than finding all of the eigenvalues of the system. However, in
experiments with a stiff spring pendulum model problem, we found that unless one started
almost exactly on the smooth (not the high-frequency) solution, the local eigenvalues do not
lie on the imaginary axis, as you might expect for a high-frequency oscillation, but instead "
may have large positive and negative real parts, causing the method to go unstable. We are

i currently looking into damping out the oscillation when its amplitude is small via BDF or , ,'

other stidfigl" dampeA methods. Lubich [34] has studied this problem for certain Runge-
Kutta methods, and gives convergence results. However, there are a number of difficulties
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in constructing a robust higher-order method, and it remains to be seen for problems in
applications whether the cost of solving a nonstiff problem by an implicit method like BDF
can be brought down sufficiently via iterative methods (although we suspect this will be
true if the number of high-frequencies is substantially smaller than the size of.the system).
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Virtual Prototyping for Mechanical System
Concurrent Engineering

Edward J. Haug, Ion G. Kuhl, and Fuh Feng Tsai

Cente for Computer Aided Deign, The Univmty of Iowa, Iowa City, Iowa 52242-1000 USA

Abstract: The emergence of high-speed computers, new mechanical system dynamic ,
simulation formulations, and a broad range of operator-in-the-loop simulators is shown to
provide a revolutionary new virtual prototyping tool to support Concurrent Engineering of
mechanical systems. The steof.the.-st of operator-in-the-loop simulation and projections
regarding its refinement for use in a broad range of engineering applications is outlined, with
emphasis on providing a virtual prototyng capability that accounts for the opecrnc-machine
interaction, prior to fabrication and test of prototypes. Examples of advanced ground vehicle

simulators, telerobotic simulators, and construction equipment simulators am used to illustrae
Svirual prototypinj applications that hold the potential to revolutionize the process of

mechanical system design for the human operator. The potential now exists to rbutinely
investigate trade-offs involving mechanical system design and operator effectiveness that Will
permit the engineering community to optimize the design of mechanical systems for the
human operator, beginning early in the design and development process and continuing
through con er cialization and product improvement. Bringing the human fact into design
consideration using virtual prototyping befor design decisions an finalized Is projected to be
one of the greatest advances in Concurrent Engineering of Mechanical Systems to occur in

the decade.

Keywords: virtual prototyping / operator-in.the.loop simulation / real-time

dynamic simulation

I Introduction * ' 7.
Dynamic simulation of mechanical systems has seen a renaissance during the 1980s, due to a " -"

. .nure.jcr of synergistic developments. The rapid increase in digital computer power has

pe nitted an international community concerned with mechanical system dynamics to cre4t
new analytical and computational formulations that take advantage of emerging computer
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17 power and automate the process of forming and solving the differenrial-allgbraic equations of

mechanical system dynamics, using only engineering model data that can be naturally and

effectively provided by the engineer. With this computational burden transferred from the

engineer and analyst to the computer, the creative process of model development, design

concept formulation and analysis, and testing of designs prior to fabrication of a prototype has

revolutionized the process of mechanical system design for dynamic performance [1-6]. As
an illustration of the explosive growth in the field of mechanical system dynamic simulation,
six textbooks and advanced research monographs on the topic have been published since

1988 [7-121, whereas only two such books had been published prior to 1988 [13.14].

4As impressive as has been the advancement in computer-based dynamic simulation of

mechanical systems, computer times required for realistic simulation of dynamic performance
of mechanical systems have been extremely high. Even on the most powerful computers
available in the late 1980s, the computer time required has typically been a factor of 10 to 100
greater than the clock-tine that transpires during actual motion of the mechanical system As
a result, only off-line (non-real.time) dynamic simulation could be caried out in support of
design applications, precluding applications in which the operator must interact with the
mechanical system to control performance. Projections of increased computer performance
and the emeragence of revolutionary new dynamics formulations in the late 1980s suggested

the potential for real-time simulation; i.e., computing the motion of a mechanical system in
one unit of the computer time that corresponds to the same unit of time required for actual

i performance of the system. This led to a vision for operator-in-the-loop simulation for a

broad range of applications in the late 1980s that is only now coming to ftion. The purpose
of this paper is to summare the development of enabling technologies for operator-in-the-
loop simulation, providing references for more detailed development. The role of openaos-in-

the-loop simulation is defifted, to permit concurrent consideration of the human operator in
design of mechanical systems, beginning in the conceptual design phase and continuing
through production and product Improvement. This new capability might be thought of as

prototyping and testing designs on the simulator with the operator-in-the-loop, suggesting the
term "virtual prototyping."

A precise definition of the term "virtual prototyping," especially as it applies to mechanical
system design, is needed to avoid confusion with other concepts in design. As a foundation
for such a definition, consider the following dictionary definitions:t Prototype; A first full-scale functional form of a new type or design of a construction

(such as An arplane).
Virtual: Being such in essence or effect, although not in actual fact.

Reality: The quality or fact of being real.
While not yet in the d'-..nary, the term "virtual reality" has taken on the meaning of the

"computer generated perception of reality on the part of an involved human." It is believed
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that the term "virtual reality" motivated the emerging use 'f the term "virtual prototype,"

suggesting both computer and human involvement in virtual prototyping.

A key concept that is implicit in each of the above definitions, but not explicitly stated, is
that the functionality of the system or environment being addressed is clearly understood.

The functionzlity of a prototype is central to the purpose for which it is fabricated and tested;
e.g., Assessment of dynamic performance, maintainability, manufacturability, and
supportability. The expression "being such" in the deftition of the word "virtual" implies
some well understood form of functionality. The essence of the concept of "reaity" is thht
some form of functionality should be, or appear to be, real. Thus. the central issue in
defining and using the tem "Virtual prototyping" is making explicit the intended functionality
of the protoype that is to be realited virtually.

With this backgrund, the following defiritions are proposed:,

Virtual Prototype: A computer based simulation of a prototype system or subsystem
with a degre of funtonlh'lism ta is compxable to that of a physical p .
Virtual Prototyping: The process of using a virtual prottrype, in l'eu of a physical
Prototype, for test and evaluation of specti; chacteristics of a cAndidate design.

!! :These definitions are innded to Include the following.

I. The intended functionality of the prototype that is to be crated virtually is
clearly defined and realistically simulated; e.g., vehicle dynamic performance,

vehicle maintainability functions, engine reliability, and vehicle
compcnen tmanuf tm ility.

2. If h umn ction is involved in the intended functionality of the prototype, then the
human funcdons involved must be realistically simulated, or the hman must be
included in the simulatio Le., realtime operatr-in.the-oop simulation.

3. If no human action is involved in !be intended functionality of the prototype, then

either off.line (non.real-time) computer simulation of the functions can be carried out;
e.g., dynamic performance of an engine, stresses in its connecting rods, and

fabriction of the connecting rods, or a combination of computer and hardware-In-the-
loop simulation can be caried out; e.g., vehicle dynamic p-iformance prediction,
laboratory durabity testing for difficult to model failure modes, and manufacturing
pMcMcss analysis or tiealeOiPOMM. 5

* : These definitions are intended to exclude the following: + *,

S1. Patal simlatio that does not nclude the fl functionality intended for the prototype;
e.g., geometric modeling with a CAD system that does not simulate dynamic
performance, finite element stress analysis of a component that does not include

system or subsystem performance simulation that defiunes loads on the component.
and manufacturing proces planning that does not consider component perfonmance or
design constraints.
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2. Show.and-tell exercises that lack a prototype level of functional reaity; e.g.. goggles

and gloves simulation with no underlying physical or mathematical simulation at an

engineering or manufacturing level of reality.

To provide background on developments that have occurred during the put decade in

dynamic simulation, a brief summary of Its evolution for off.line (non-rel.-time) applications

is provided. A vision is suggested for real-time operator-in-the-loop simulation that creates
the opportunity for virtual prototyping in a broad range of mechanical system desig and
development applications, with emphasis on ground vehicles and construction equipment
applications. Real-time recursive dynamics formulations that are well-suited to exploit the

cmerging capabilities of shared memory parail processors am summarized, with references

to further developments. Emerging technologies, including recursive dynamics, for advanced
driving simulation and virtual prototyping applications ur summarized, culminating in the

current Implementation of a number of advanced pound vehicle driving simulators that will

support a broad range of human factors resewrch, including highway safety and vehicle andI highway system design. Finally, other operator-in-the-loop applications, primarily
telerobotics and consruction equipment are outlined, to provide an indication of the potential

that exists for virtual prototyping in a broad range of Concurrent Pngineering applications.

2. Off-Line Dynamic Simulation

To Illustrate the capabilities that have evolved in off-line, or non-real-time dynamic

simulation, consider the tractor-trailer roll stability analysis suggested by the scenario shown

In Figure 1. A wactor-trailer vehicle drives along a road surface and encouitrs a depression
that Is at an angle with the roadway, causing roll motion of the vehlclo as it tansits the

irregular road surface. The objective is to cmee a dynamic simulation of the tractor-tailer and

Its contact with the road surface via its tires, to predict roll motion of the vehicle as it moves
through the depression.

To model the tractor-wailer using a commercial dynamic simulation program such as

DADS (15], the vehicle M-nernatcs and internal force characteristics are modeled using a
library of joints and force elements that are offered within the dynamic simulation computer

program, Shown in Figure 2 is a sampling of standard kinematic connections between pairs

of bodies (9] that can be used to make up the model of a mechanical system, such as the
tsctor-trailer" -icle in question. Also shown is an illusation of a force element [9] that can

be used to acs,,:for forces acting internal to the machanical system due to sprins,
dampers, hydraulic actuators, electrical motors, and a variety of related force

generating devices.
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Fig=r 1. Tnctor-.Trsler with Depression In Road

iii

* To illustrate the use of kinematc and force building block$ illustrated in Figure 2, a

tractor-trailer model suitable for toll stability analysis in the situation shown in Figure 1 is

described in Figure 3. Rotational and translational joints are used to permit roll and heave

(vertical relative to chassis) motion of each of the five Wxes and associated wheel sets that

make up the model of a tractor-tiler. Suspension springs and shock absorbers are accounted

for by force elements between the aWes and the chassis of the tractor and the trailer, as I
7. shown. Te load leveling effect of leaf springs in the tractor and trailer suspension

subsystems is accounted for by modeling the leaf spring as bodies that are pivoted relative to

the chasses of the tractor and trailer, as in themrea application. with spring effects concentrated

at the ends of the bodies. ThIs permits the intended nearly equal distribution of loads across

pairs of axles in the tractor and trailer. Vertical and lateral forces due to tire contact with the

road surface are calculated using empirical models of the tires and are transfered to the

appropriate axle. The tractor and nier are coupled to represent the effect of the "fifth wheel"

connection between the tractor and trailer.
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vehicle simulation that are typical of those found In automobiles and heavy trucks. It has been

used extensively in comparison of alternative algorithms and benchmarking on alternate

computer platforms. It is used in this paper to provide a concrete example of the class of
1 algorithms being considered and to serve -as -the basis for computational efficiency

comparisons between algorithms and altemate computer implementations.

I ai

algoritm big onierehtda ov npc and tolserve t eahther baioopttoae efficn

1 a

a a1

I I'

comrisdofite 5. High Mobility Muldpuro)se Wheeled Vehicle (HMMWV) t

The schematic representation of a llouren body model of the rdomMWV is shown in
Figure 6. RIwid bodies that may move in space and relative to each other are shown
srhematicaly as crcled numbers reprsentng bodies I through 14. Body 1 is the chassis of
the vehicle nd body 2 is di steering rack. The right front suspension subsystem is

comprised of the lower control arm (body s), the wheelssembly (body 4), and the upper control ar (bodly 5). Ealch of the other three suspension subsystems is similarly constructed, a+

Translational a nd rottonal joint allow o onte relative deree of freedom, onseation
and rtaton, respetively, betwe n bodies they cnneet. Spherical joints permit three relative

R ,rotaton degrees of freedom between bodies they connect. Finally, tie rod ditunce constrants I
1 serve to constn the distance between points on bodies they connect. +.

+" + A glraph theoretic represetation of the HMMWV model is shown in Figure 7. Numbered +.

nodes (circles) of the graiph represent bodies identified in Figure 6. E~dges of the graph that +
+'+-connect bodies represent Joints and tie ro distance constraints between the bodies connected. a+;+'

tM

mechanism; i~e,, paths that may be t-aversed beginning-fr~om body 1 and crossing successive a 
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• onts ado b is to dfrn fo bu~oiden. tdestablished mehdfor u:eadlng such closed
. define tespanning utee praph shown in Figure 8 (133. This spanning tree provides a

{i of motion, using the L agrage mutipli= er h consn d~zin [9]e .o+adnofte dn
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the orthogonal orientation transformation matrix A, for body I and the joint relative
coriatesa 9

A1-A1 IA Jq1 )J (2)

Iwhere A.. is the orthogonal orientation transformation matix fom the body j joint reference
frame to the body i joint reference framne, which depends on the joit relative coordinates qj

As a concrete illustration of relative coordinate inemnatic relationships, consider the
chassis and upper control azm of the HMMW model shown in Figure 6. As shown in
Figue 10, for the rotational Joint between bodies 5 and 1. dij 0 and Eq. 1 specializes to

r 5 -r+s 1 5 s 51 (3)

Noting that, in the case of this rotational joint, the relative coordinate q,5 Is a rotation about
the unit vector u1 along the axis of relative rotation, Eq. 3 may be differentiated to obtain a

relative velocity relationship. From geometric considerations, an angular velocity relationship

between bodies 5 and 1 can similarly be written (163. The combined result is the matrix
relationship

Cs 1 0 1~s-is T LUi1 i
'44
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Figure S. Spanning Tree Corresponding to Figure 4

The basic concept of reative coordinate kinematics between bodies that are connected by &
joint is illuitrated in Figure 9. The pair of bodies shown, designated by indices i and J, each

* have associated x!-y'-z' body reference frames, with origins at 01And Oy. In addition, joint
x"-y"-z" reference frames ae located on the bodies at joint definition points Oij and OJi.
The vectors Sij and sji locate the origins of the joint reference frames in the respective bodies.
The orientations of the joint reference frames relative to the body reference frames are defined
by constant orthogonal rotation transformation matIces [9] Cij and C on bodies i
and J, respectively.

Denoting the vector (column matrix) of joint relative coordinates between bodies i and j as
qiwhich depend on the type of joint selected, the following vector relationship can be

written to define the vector rj that locates body j in space, as a function of ri and the relative
coordinates qj:1 r, + * j+ d ,j(q 11) - (1)

where the vector dij depends on joint relative coordinates. Similarly, the orthogonal
orientation transtormation matrix Aj for the body j reference *rme can be written in terms of
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where the operator - denotes vector product (9]. Defining coefficient mantices in this

relationship u BS and D1S, Eq. 4 may be written in the form

SYs B1 sY1 +D1 ~hs (5)

T
where y.j f is the composite vector of Cartesian velocity and angular velocity,
relative to the inertial refernce frame.

-. F~ue1 .atv CordnteReaioshp

;Z x

l1 1

Y oil

1 i/gure 10. Relative Coordinate Relationships

DenodngS Z Lz rT, 8XT1 as a composite vector of virtual displacement and virual
rotation, an analogous relationship to Eq. 5 [16] is obtained as

' 8ZS -a 8158Z, + Djs5A(g)

where aqs is a vAriation in the joint relative coordinate q,,.

Differentiadng Eq. 5 with respect o time yields the acceleration relationship

YS~ - 8IIs'I + Dis~ila + EIS (7ti'

(7)
where E 15 is a term that is quadratic in velocities. For details of the derivation of these

equations and conwuction of the associated matrices, see Refs. 16 to 18.
One of the key computational steps in dynamic simulation is the calculation of the position

and velocity of each body in the system, relative to the inertial reference frame, once all
relative coordinates and their time derivatives are known. This computation proceeds 4.
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systematically, using Eqs. 1, 2, and 4, along each branch of the spanning tree shown in

Figure 8. As shown schematically in Figure 11, for each branch in the spanning tree,
computations begin with the chassis and proceed outward toward the extreme bodies in each
branch, called tree end bodies. In each branch, computad6ns cross a joint from body I to the
next body and, If thee is a subsequent body in the chain, carrying out the computation across

that joint. The graph shown in Figure I I serves as a guide for efficient use of a parallel
computer, illustrating that computations may proceed In parallel along eachi )f the nine
branches in the spanning tree. This serves as a guide to coarse-grain parallelism that can
effectively exploit modem shared-memory multprocessors. While not discussed in this

paper, independent joint relative coordinates are defined, and dependent relative coordinates
computed using algebraic constraints associaed with the cut joints defined in Figure 7. For
details of this iterative computation, see Refs. 16 and 18. ,I 10 24

Ss S2
T I

iI

12 R7 R3 8

13 7

Figure II. Forward Path Sequence

Denoting the cut joint algebraic constaints as

.(q 1) 0 .
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the variational form of the equations of motion of the entire system, and of the right front

suspension subsystem of the HMMWV, can be written as

8Z(M* -Qs + Z) T(Mlyi - 0)

T *T

8Z Ms's - 05) + 8Z4(M4 4 - 04 + € ))

which must hold for all kinematically admissible virtual displacements and rotations 6Zi,

Using equations analogous to Eqs. 6 and 7 that relate the virtual displacement and acceleration
of body 4 to those of body 5 into Eq. 9 yields

8Z3T(M3*i3 - 03 + 1TZ %) + 8ZT(MIYI -. 01)

+ 8ZT{(MS + K5) G + R 4 - (05 + LS) + Pi.})

tT + *4Cs5+H44+V IIX -. - . - -

where coefficient matrices are products of those appearing in Eqs. 6, 7, and 9. Note that

Eq. 10 holds for all kinemadcally admissible virtual displacements of bodies 3 and 5 and
arbirary values of 8qS4. Thus, the coeficient of &qS4 must be 0. yielding

i q4 = " HI (GI* + V5 + WTSX)
I5UlIJT 5T 5)(11)

This observation [16,17) permits reduction of the equations of motion and solution for
relative coordinate accelerations between bodies 5 and 4, as functions of inboard body
accelerations and LaIrange multipliers.

The above process is continued by substituting from Eqs. 6 and I to eliminate 8Z5 and

Y5, yielding expressions that involve only chassis accelerations and Lagrange multipliers.
Canying out similar reductions along other branches of th: spanning tee, beginning with the

outermost bodies and moving in toward the chassis, yields the marix equation[,< ,,,.r,1.,, +

i OMJI II '

OM1 OL . RHS (12)

which involves only the chassis accelertion and Lagranle multipliers associated with cut-

joint constraints. The second line of Eq. 12 is obtained by differentiating the constaint

equations of Eq. 8 twice. For detuils of this reduction, see Refs. 16 and 17.
A key characteristic of this recursve formulation of the equations of modon, based on the

spanning ree graph and elimnaton ofjoin relative accelerations, Is that it eliminates all

relative coordinate accelerations from the reduced equations of motion of Eq. 12. This
algorithm is thus called the recursive algorithm "with elimination". T.t number of
computations required for its imnplenentation is proportional to the number of relative
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coordinates in the longest chain in the mechanism. For a single-chain mechanism with n

joints, the number of calculations is proportional to n. The algorithm is thus called "order.n".

Rather than eliminating the relative coordinate acceleration using Eq. 11, which involves

the inversion of a matrix, the last term in Eq. 10 my be retained in the equations of motion

and the recursive process of eliminating 8Z5 may be applied to obtain

484{(Ml + K1)11 + R141s + T1 R 544 - [01 + L13 + Bys B pT

+ 4&G~ +H14sV, TPIX)
+ 8qJ4 ({s13B5 1 + QsD15q11h + H54 + (GSE 15 + VS) + WJ1 - 0 (13)

After this process is complete, equations analogous to Eq. 7 are usOd to write all Ca.rtesian

acceleations in terms of relative coordinate accelerations. Coefficients of relative coordinate

variations must then be 0 [18], y elding

[M  J rh. (14) 1'

where the last row is the second time derivative of Eq. 8, written in terms of joint relative

coordinates. This formulation is fundamentally different from the recursive algorithm with

elimination that resulted in Eq. 12. First, it typically involves more variables, hence larger

marices, so that the number of calculations in solving Eq. 14 is proportonal to the cube of

the number of relative generalized coordinates. This algorithm has come to be called the
*recursive algorithm "without elimination" and is designated as "order-n3". For details of this

algorithm, see Refs. 18 and 19.
For more complex me6)ial systems that consist of multiple, closed kinematic chains,

computational complexity issues are somewhat more involved than indicated by the ordern

versus order.n designation for single chain systems. For both the formaladons "without -

elimination" and "with elimination," all independent kinematic chains can be traversed

simultaneously, once loop cuts have been applied. Thus in both cases, provided that

suffcient panlel processing is used, the complexity of forming the linear equations of motion

(Eq. 12 and Eq. 14, respectively) can be kept proportional to the length of the longest such

chain, regardless of the number of chains in the overall model. In the formulation "with

elimination," solving Eq. 12 will have complexity proportional to the cube of the overall

number of Lagrange multipliers (cut constraints). in the model. In the latter case, the -

complexity of solving Eq. 14 will be proportional to the cube of the overall number of 4
generlized coordinates in the system.
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To question of which formuladoion will be more efficient for a given mechanical system

model is dependent on the characteristics of the model; e.g., the total number of generalized

coordinates, number of chains, maximum length of chains, and number of cut constraints. A

third variation of the recursive dynamics formulations allows elimination of Lagrange

multipliers from each kinematically decoupled loop. This may provide computational

advantages for systems that contain a signiflcant number of decoupled loops. Full "scussion
of this method is beyond the scope of this paper, but details can be found in Refs. 18 and 19.

Much as the forward path sequence of Figure 11 identified parallelism in kinematic com-

putations, the backward path sequence in Figure 12 illustrates that for either the order-n or

order-n3 algorithms, formation of the equations of motion proceeds along each branch of the
spanning tree, beginning with the outermost body and moving back to the chassis, as
illustrated in Figure 12. Since each of these computations is Independent, this diagram 3

provides a guide to coarse-grain parallelism for parallel computer Implementation.

10 24

$8 S2
TI

14 8

.$4

,, .1

13 7

Figure 12. Backward Path Sequence

4. Parallel Processing Real.Time Dynamic Simulation
Parallel processing algorithms that exploit the coarse-grain parallelism outlined in the

[ pr ieceding section, for both kinematic and kinetic computations, have been developed in
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Refs. 20 and 21. A number of refinements in psradll computational implementation have

I been developed and demonstrated in Ref. 22, to identify fine-grain parallel computation

opportunities that exploit emerging shared-memory multiprocessor computer architectures,
Benchmark parallel computer implementations oi the recursive algorithms, both with
elimination and without elimination, have been made on an eight.processor Alliant FX,8
parallel computer. In order to achieve real-time simulation of the HMMWV vehir.e illustrated
in the preceeding section, a total computation time per integration time step of 6.7 msec is
required for explicit integration with constant time step. This figure is based on an objective
of capturing 15 Hz behavior of the vehicle suspension and a rule-of-thumb estimate of ten

integration die steps per Hz.
The parallel task graph for the recursive algorithm without elimination shown in

Figure 13. which is explained in detail in Refs. 21 and 22, yielded a 6.4 maec per integration
time step performance. This represents real-time simulation of a realistic ground vehicle and
achieves 75 percent utilization of the cight-processor Alliant FX/8 parallel computer. This
enhanced level of performance is obtained by combilng coarse- and fine-grain parallel

processing opportunities Identified by the spanning tree graph and computational sequences
within the algorithm.

As parallel computers with larger numbers of processors become available, additional
vehicle simulation computations beyond those associated with the basic suspension and

IT ,zchassis subsystem can be accommodated. As illustrated by the vehicle subystem modules on
the periphery of the diagram of Figure 14, numerous subsystem models can be
accommodated on additional processors, computing force effects that are incorporated in the
right side of the equations of motion, which are generated by the algorithms outlined in the
preceeding section. Thus, scaling of the vehicle dynamic computational load is relatively
straightforward on shared-memory multiprocessors with more than eight compute elements.

As a final observation regarding computer architectures for real-time dynamic simulation,
computational experience with the Alliant FX/8 and its vectorized processors is of some
interest This computer permits code to be compiled with vectorization suppressed. In this

mode, the compute elements behave as scalar processors. Due to the small dimension of

vectors that are used iri the dynamics formulation and the extensive number of coMputations

with 3x3 matrices, the dynamic simulation code runs essentially as fast on the Alliant FX 8
with the vectorization option turned off. This suggett' i t the overhead associati, witl,
starting up pipeline operations with the small vectors and matricz- that am en:countered in

dynamics exceeds the benefits gained. The conclusion that can be drawn from this
coinputational experience is that parallel computers and workstations with high-speed scalar

RISC processors, functioning with a shared-memory, are ideally suited for high-speed
dynamic computation. In contrast, there appears to be ittle pin to be achieved with these
algorithms in the use of pipelined supercomputers. The emegence of modest-cost panlel
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superworkstations and parallel computers thus suggests that there is a broad class of

applications that can be effectively addressed with modest-cost parallel computers,

In the past several years, a number of computer vendors have begun to offer multiple
processor systems, utilizing RISC technology, in relatively low-cost workstation platforms.
Larger systems, with up to 28 processors, an available in minisupercomputer configurations.
These RISC processors are characterized by short, highly regular instruction pipelines and a
sustained CPU throughput of one or more scalar instuctions per cycle. As such, they are
ideally suited for scalar computations associated with the recursive dynamics formulations. In
four- to cisht-processor configurations, these systems offer sufficient computational capacity
to support some real-time dynamic simulation applications, at costs that are an order of
magnitude less than typical minisupercomputer class systems and two orders of magnitude
less than ful-fledged supercomputers.

An Implementation of the HMMWV simulation, using the recursive formulation without
elimination, has been carried out on a four processor Hewlett Packard/Apollo DNIOOOO RISC
workstation, A performance level of 3.3 milliseconds per time step was achieved, using all
four of :he DN10000 processors. The same simulation required 8.5 milliseconds per time
step on a single DNIOOO processor. The parallel processing speedup factor for the parallel
version was thereiore 2.57, representing a parallel processing efficiency of over 64 peret.

The performance of RISC processors can be expected to Improve dramaticslly In the
future. Currently, an approximate doubling of performance is being observed every two
years. The number of processors available in multiprocessor workstations is also increasing,
with eight- to sixteen-processor configurations now available.

A limitation of current generation multiprocessor workstations is the lack of adequate
programming tools and run-time support for development and execution of parallel
applications. In the absence of such support, constructng parallel dynamics Implementations
currently requires considerable effort and specific familiarity with low-level architectural detail
of the system. Similar problems exist with respect to the lack of direct operating systemr
support for deterministic, real-time processing. However, as these systems continue to
proliferate, programming support and operating system functionality can be expected
to improve.

S. Computer Graphics

While the scope of Uhs paper preludes a detailed discussion of the technology* of computer
graphics, it is of interest to note the significant advancements that have occurred in computer
image generation of complex realistic scenes, motivated primarily by aircraft flight simulators.

More pertinent to the ground vehicle applications discussed thus far in this paper, the scene

.. .. ..II l I Ilthescopefthispape precludesaIdeileddisc n tg o



ihown in Fig=r 15 indicates the level of textural detail that can be accommodated In scenes

through which a dulver can function 1231, n, e revolutionaDry developments that have occurred

In hIgh-performance computer image generation provide extraordinarily real~i~c visual
feedback to the driver of the vehicle, with realistic motion predicted using the dynamics
methods outlined in the previous two sections.

Mplre 15. Ground Vehicle Visual Imagry

The type of high-quality, textured graphics capability currently provided only by
specialized, muldl-mi~ion dollar Image generation aystau is rapid~ly evolving into lower-cost

graphics workstation platforms, High-end graphics workstations, such as the Silicon

Graphics IRIS 4D, offer features such as texture mapping and can prov.d s~i flant frame
rate capability, Such systems are not curently cu4Iable of supporting the demands of real-time

image generation for jilghly realistc operator-in-the-loop simulftion. However, as current
rates of performance increase, the highebt-end workstation systemv can ison be expected to

achieve this level of capability. By the mid-1990, it can be expected that multiprocessor

graphics workstation platforms will be available that will be sufficiently powerful to support

both real-time dynamic simulation and reasonably high-quality real-time image generation.
This should result in a dramatic reduction in the cost of achieving low and mid-range vehicle
simulation capabilities.

11



6. Motion Generation

To complete the realism of the operator' s experience in driving a vehicle, it Is Important that

the platform on which the driver sits while driving the vehicle moves so that the motion cues

experienced during driving are replicated. In the &rea of aircraft flight simulation, one of theillmost advanced simulators opera:od by NASA at Moffett Fied, California is shown• : [ schematically in Digurc 16. This major fUght simulator has a motion base that moves sixty (

feet vertically, forty feet laterally, and eight feet longitudinally, with substantial acceleration
capability . The pilot thus feels motion cuts associated with flying the aircraft that is being
simulated, in ddition to seeing n visual display of the motion that would be experienced in
flying the actual aircraft. While this motion envelope is well suited to advanced aircraft
simulation, the basic motion envelope Is not suitable for gound veh;ile applications in which
the vehicle experiences sustained longitudinal and lateral accelerations. Under conditions of
high acceleration, only modest vertical displacement is required for the ground vehicle.

Nevertheless, this motion generation technology has been developed for aircraft applications.

"P~4 fI&.L MS1ON GIL

VRLA W" is 5

. M s6 Il

Figure 16. NASA Vertical Motion Simulator
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At the other exueme of motion generation, ajmassivehexapod motion base discussed in

Ref. I has recently been Instialed at the US Amy Tank-Automotive Command in Warren,
Michigan. This high.capsciy motion base can move a 25 ton turret, with up to S g
acceleration, in precision motion. This and the aircraft simulator motion base shown in
Figure 16 clearly illusu'ate that the technology for motion generation in vehicle simulation is

I in hand.

7. Ground Vehicle Virtual Prototyping

The most advanced ground vehicle driving simulator in existence to date is operated by
Daimler-Benz in Berlin [24]. This system, shown schematically in Figure 17, consists of a
thirty-foot-diameter dome on a platform that supports the vehicle 6ab in which the driver
functions. Grapic imagery is displayed on the interior of the dome, wrapped 180 dep s
around the driver's vehicle. The dome and platform arm moved by a six-degree-of-freedom

hexapod system that provides approximately two Hz motion response, With substantial roll
and pitch. This simulator utilizes 1985 vintage graphics that are not textured, but provide a
sharp scene at high frame rate to the driver of the vehicle, Experience with this simulator has
attracted a great deal of attention to the potential that exists for this new class of advanced

ground vehicle driving simulators.

t •ti I

iii

I lFigure 17. Dairrler.Benz Driving Sirhulator
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A new virtual protoryping simulator that is under construction a: The University of Iowa,

using advanced textured graphics and the recursive dynamics algorithms outlined in Sections

2 and 3, is shown schematically in Figure 18. This simulator employs a small hexapod

motion base with frequency response up to approximately ten Hz and represents the most

advanced vehicle virtual prototyping simulator in the US.

LWI

ii

FIlre 18. Iowa Virtual PrototypIng Simulator

The most advanced driving simulator being considered for consmction at the present time

is the National Advanced Driving Simulator [25], shown schematically in Figure 19. This

advanced driving simulator is based on the recursive parallel processing dynamics methods

outlined in this paper and the most advanced textured graphics capability that will be available 4

in the mid-1990s. The motion envelope of this simulator will be far superior to that of any

ground vehicle driving simulator ever conceived. It will Involve lateral motion of

approximately thirty.five feet and longitudinal motion of ninety feet, with one g of

acceleration horizontally and 2.5 g vertically. It will support a continuous yaw ring on the

motion platiforn that will persnit extremely realistic motion, consistent with the scene through

which the driver is progressing, to be generated. Details on the conceptual design of this

device may be found in Ref. 2.5. 233
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Figure 19. National Advanced Driving Simulator

8. Telerobotic and Construction Equipment Virtual Prototyping

The concept of a virtual prototyping *simulator for a rimotely operated robot shown in
Figure 20 illustrates the. concept of creating capability to simulate both the performance and
visual environment of a manipulator or robot that is conwroled by a human operator using
video feedback. This concept has been studied extensively with NASA for remote

teleoperation, of robots in space. Implementation of this concept on an advanced Sraphics
work station, using a six degreeof-*needom, fore-feedback manipulator controller shown in
Figue 21 (lFiaf mini-master with robot on screen) used by the operator to input desired
motion and receive force feedback indicating level of effort by actuator on the robot. The
level of simulation detail incorporated in this application includes dynamic performance of

hilh-gesar ratio special purpose drives in the actual robot in [26].
Motivated by the robot application, developments have taken place in construction

equipment operAtor-in-the-loop simulation; eg., a construction backhoe. Actual construction
backhoe; operator consoles hav: been implemented with a large screen visual display shown in
ft e22fr iulton bche operation, h eltm computer simulation in this
application includes the kinematics and dynamics of the backhoe construction equipment as

j234 4
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Simulated Environment

Figre 20. Sc=adc of RobotVirtual Prootypins Simulator

Figure 21. Kraft Mini-Maiter for Robot Control
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well as dynamics of the hydraulics system that drives the backhoe. This simulation, which

functions on a two processor workstation that also drives the graphics projector can now be
used to investigate alternative operator interfaces and control algorithms (26]. The breadth of
such applications for both naining and design for optimum performance of equipment in the
hands of the operator is now feasible and finding its way into engineering and

training applications,

1 4

44 4

4 44

9. Conciusions

The technology for opertor-.;.th-loop virtual prototyping, as regards graphics and motion
Ssubsystems, his$ been deveopod, over thi past two decade s for atrmrft flight simulation. i

Dynamic simulation of adrnrdt motion for pilot-in-tht-loop aircraft flight simulation is,
~~howcvoi, much less complex and demanding than simulation of the ext.-cmely nonlinear 1 >

, dynamic effects of Vehidle~suspeasons and *re-road surface interaction, and construction
' equipmenit hydraulics. Major new application& in ground vehicle driving and '

robot/construction equipment virtual protorying am only now feasible, as a result of the
, Iadvancements in rcursiy! dynaics-algorhthmi and parallel computer implementations

it ~~outlined in this paper. These developments combined with available computer graphics and <' '
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motion base technologies, create a unique opportunity for tailoring the design of vehicles,

robots, and construction equipment to the capabilities of the operator, investigating the

Tinfluence of human conditlons and capabilities on the operatoss ability to carry out complex
task of equipment operation, and for numerous other important applications that influence the

lives of virtually every cidzen of the world on a daily bads. These advances have been made
possible by mathematical and computational developments in the theory of dynamics and its

: : - parallel implementation on emerging high-speed RISC-based parallel computers. it is
+ interesting that this =themadcad development his been felt very quickly in the field of grond

"ehclevirtual prototyping.
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Man/Machine Interaction Dynamics and Performance
Analysis, Multibody Methods for Biomechanics

Harold P. Frisch
Code 714.1
NASA/Goddard Space Flight Center

Greenbelt, MD 20771, USA

Abstract: The Man/Machine Interaction Dynamics and Performance (MMIDAP) anal-
ysis project seeks to create an ability to study the consequences of machine design alter-
natives relative to the performance of both the machine and its operator. The MMIDAP 4
problem highlights the conflicting needs and views of groups that focus Cn machine de-
sign and groups that focus on human performance, ergonomics, and cumulative injury
potential. This chapter will overview and update ongoing MMIDAP capability develop-
ment efforts being undertaken by a rather loose group of collaborating researchers. An
attempt will also be made to highlight problems associated with using traditional multi-
body mechanical system analysis tools for musculoskeletal dynamics analysis at the level
of fidelity needed by the biomechanics communitv. In particular problems associated
with using traditional multibody system tools for viscoelastically restrained joints and
multiple muscle systems will be discussed and enhanced solution approaches proposed.

Keywords: Human Performance, Human Factors, Multidisciplinary Analysis. Human
Machine Interaction. Biomechanics, Biodyn,.mics, Ergonomics, Machine Operator Sys-
tems.

1 Introduction

A confluence of diverse computer science, mechanical systems, and biosystem technolo-
gies is now forming. Advanced mechanical system dynamics analysis methodologies,
biosystem measurement and modeling techniques, computer hardware configurations,
Concurrent Engineering communications, database systems, anatomical, biomechanical.
biodynamical, behavioral, and *cognitive science research capabilities can, with reason-
able effort and proper focus, be drawn together to create a Man/Machine Interaction
Dynamics and Performance (MMIDAP) analysis capability. The envisioned capability is
to build upon existing and readily extendable capabilities. Contained within this chapter
is an abbreviated review of the MMIDAP project and an overview of work that has been
initiated since the last summary paper on the subject 1].
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The final report of the 1985 Integrated Ergonomic Modeling Workshop [2] contains
a detailed review of pre-1988 software capability along with a list of recommendations
for future research. It specifically remarks that "there is a paucity of dynamic interface
models" and that "an integrated ergonomic model is needed, feasible, and useful." The
report's review shows that some work exists under the general heading of optimization of
sports motion; however, there is virtually nothing to support mechanical system designers
that must evaluate machine operator interaction dynamics and performance with or

* without survival gear, in hostile environments, on-the-job, on earth, or in space.
The MMIDAP project supports the generic machine operator system design problem.

It is directed toward machines that are controlled by a human operator's intelligent
physical exertions. MMIDAP analysis tools will allow designers to introduce the physical
and cognitive limitations of a specific operator or operator population class into the

* machine design process. The intent is to develop the MMIDAP analysis capability in as
generic a manner as possible. This will enable its application within a broad range of
aerospace, machine design, ergonomic, physical therapy and rehabilitation engineering
problems. There is no desire to duplicate the statics and kinematics based software
systems that now support human factors investigations such as those identified in [2]
and [3]. Our intent is to complement these with new techniques that support "what if?
studies of problems that cannot ignore dynamics and human performance considerations.

2 Anthropometric and Biomechanical Databases

The National Library of Medicine (NLM) is currently undertaking a project that intends
4i to build a digital image library of volumetric data representing a complete normal adult

human male and female [4]. This "Visible Human Project" will include digital images de-
rived from photographic images obtained from cryosectioning, computerized tomography,
and magnetic resonance imaging, for example [5]. Several of the MMIDAP collaborating

research groups have recognized the potential for the analysts to define data need to the
anatomists while they determine if it is feasible with modern technology to provide the
requested data as a by-product of the "Visible Human Project.

Kroemer [2] provides a review of currently supported anthropometric data bases and
computer models used in the field of ergonomics. Winters [6] provides a source book for
multiple muscle systems and movement organization along with a survey by Yamaguchi
(7] listing human musculotendon actuator parameters from over 20 different published
sources. Additionally Seireg in [8] provides the anthropometric and musculoskeletal data
used to support musculo load sharing research carried on at The University of Wisconsin $

at Madison.
One major problem with existing biomechanical data is that it comes from so many

different sources with almost as many different measurement reference frames. A quick
scan of data provided by Yamaguchi in !71 reveals considerable numeric variation between
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i reference sources for the same anatomical component. The data tables also reveal that
there are considerable data gaps. The NLM's Visible Human Project is presenting the

biomechanics community with a unique opportimity to fill these gaps and to obtain a
consistent reference source of fundamental biomechanical data.

3 Human Performance Database

There is no lack of literature regarding the quantification of human function or perfor-
mance. The literature as a whc!e can perhaps best be characterized by noting that it a

lacks a common conceptual frameork upon which human performance quantification
strategies can be based. As discussed by Kondraske in (9) this has made it difficult to

It I organize previous work and compare methods. The approach that is advocated herein for
resolving this problem introduces the concept of a functional unit. This entity is defined
in such a manner that it must possess a measurable resource level to accomplish a highly
focused ', ,sk. Considering all functional units collectively leads to the realization of a
finite set of basic elements of performance (BEPs). In mathematical terms, the BEPs
define a set of basis vectors while associated measured resource level defines vector mag-
nitude. To specify a BEP one must delineate both the functional unit and its dimensions

, of performance.
Human BEPs may be organized into three primary domains:

1. Central processing

2. Physical: Environmental interface

3. Physical: Life-sustaining

The collective set of all BEPs forms a performance pool. This performance pool may
be defined for an individual or for a population group. It defines levels of resources avail-
able relative to all dimensions of performance associated with all functional units. To
accomplish any task (physical or mental), humans draw upon appropriate BEPs from the

performance pool in the required amount. Successful task performance is determined by
the availability of required BEPs. If insufficient BEP resources are available from the per-
formance pool, the task cannot be accomplished. If just enough exist, task performance
will be stressful. If more than enough exist, task performance will be comfortable. Un-
fortunately one cannot assume that all BEPs are functionally independent of each other.
There are dependencies that must be recognized and accounted for in the performance -
analysis process. As stated by Fitts in 110], we cannot study man's motor system at the
behavioral level in isolation from its associated sensory mechanisms. We can only analyze
the behavior of the entire receptor-neural-effector system. The implication here and the
major challenge for MMIDAP is to develop and implement methods that automate the
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process of detecting and accounting for functional relationships between the sets of BEPs
that must be simultaneously exercised during task performance.

The development of these functional relaticnships in a format compatible with being
interfaced to the human performance database represents many cutting edge research
projects at the Human Performance Institute (HPI) at The University of Texas at Ar-
lington. Kondraske in 191 and (111 provides a good overview of task decomposition via
BEP, and the methods being used to database the BEP records of the 3000+ patients
tested with systems developed at the Human Performance Institute (HPI).

4 System Performance Analyses

A theory is presented by Kondraske in (12] that develops a scientifically based concep- 'I
tual framework for addressing many fields of concern relating to human performance.
The theory involves the concepts o" basic elements of performance and human resource
economics.

Ivany questions regarding biomechsaical behavior can and are being addressed with-
out consideration of system performance; however, human performance questions asso-
ciated with complex ta&.s cannot ignore biomechanics and biodynamics. Biomechanical
models typically focus on the principles of materials and mechanical behavior, while a
system performance model for a given subsystem recognizes dependency on components
external to the biomechanical domain (vision, neuromotor control, etc.).

The basic difference between classic biomechanical azalysis and performance analysiscan be summarized as follows:

Biomechanical & Biodynamics Analysis - provide traditional static and dynanic
analyses that depend upon the basic physical concepts of mass, inertia, geometry,
stiffness, position, veiccity, acceleration, musculotendon, and environmental loads.

Performance Analysis - use, biomechanical and biodynamics analysis information to
oaantify the qualitative parameturs used to characterize a system's capacity to
successfully accomplish a task. It focuses on providing analysts with an enabling
capability to ask and quantify answers to the following 3 fundamental questions:

1. Cr the task be accomplished? If not, why not.
2. How well can the task be accomplishea?

3. What is the best way to accomplish the task?

These questions may be directed to either the machine operator, or the machine-
operator system.
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Performance analyses are simple in concept and yet powerful as total system design
and evaluation tools. System performance can be modeled in terms of the avadable
performance resources of the operator while quantitative task characterization can be
expressed in terms of the performance resource demands required of the operator. A
detail development of these concepts is found in (9) and (12).

5 Prediction of Human Motion
,I

One fundamental difference between repetitively testing human subjects and repetitively
testing mathematical models is that the human's response is nonrepeatable, (13). The
modeling goal for the prediction of human performance can therefore only be that the
predicted motion be physically reasonable. Predictions and reasonable variations around
them should be viewd as defining an envelop of possible human response. With this re-
alization in mind, simplified motion prediction algorithms can justifiably be introduced
into the motion prediction model. Physical realizability can be checked by viewing ani-
mated response, monitoring joint rates, acceleration, jerk, loading, and comparing these
with norms in the BEP database.

The program JACK (14] has several unique features that make it ideal for MMIDAP
appication. Figure positioning by multiple constraints [15 is a capability that allows
users to specify trajectc .as at several body fixed points (hand, feet, torso) and to then
have motion trajectories for all other points predicted. Strength guided motion (16] is
a capability that allows for human strength and comfort data to be used in the motion
prediction process. The creators of JACK make note of the fact that others such as
Wilhelms in (17] have used forward dynamics for human n,,tion prediction. The JACK
development team argues that utilization of a forward dynamics approach to human
animation is difficult for the user to control because users must provide all joint torques.
For a 3D system, this is a near impossible task.' Kinematic and inverse kinematic
approaches are easier to manipulate but suffer from the potential of unrealistic joint
motion. JACK uses a blend of kinematic, dynamic, and biomechanical information when
planning and executing a path. The task only needs to be described by a starting point,
ending position, and external loads such as gravity and weights to be transported. An
excellent review of the program JACK and computer graphics research as applied to the
animation of human figures is provided by Badler in (14], [18), (19] and [20].

Forward dynamics solutions compatible with the high speed simulation needs of animation is not yet
achievable: however, forward dynamics solutions can and are being used to study motion optimization
strategies that underlie natural movement.

I
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6 Integrated Musculoskeletal and Machine Dynam-
Ii ics

The creatk,- of mathematical models for the characterization of system dynamics is a
fundamental part of engineering analysis. Both mechanical and biomechanical groups
frequently make use of lumped parameter models. These models consist of hinge con-
nected rigid and flexible bodies, i.e., multibody systems. An excellent overview of existing
automated methods for developing simulation models for complex mechanical systems
via multibody dynamics analysis software systems is provided by Schiehlen in (21]. In
the late 1980's, several international groups discovered that equations of motion could
be rederived in such a manner that computational speed could be greatly enhanced [22],
[23], and [24]. New implementations of these and analogous methods with improved
speed and modeling capability are now in use, [25], [27], [28], and (29].

Multibody simulation models have been successfully used to model certain classes of
musculoskeletal systems. However, modeling weaknesses exist and these must be recog-
nized before one attempts to use multibody tools for general biomechanicl and biody-
namical application. The following deficiencies associated with vertebrate biodynamics

I application have been recognized and plans are now underway to enhance the program
NDISCOS, [25] and [26] accordingly:

. Inverse dynamics for deterministic systems. This capability is necessary to predict
resultant joint loads associated with the dynamic interaction between machine and
operator.

* Intermittent loop closure and range of motion constraints. This capability is needed
to model the interface between man and machine and to routinely include range of
motion limits for anatomical joints.

9 Biomechanical joints must now be approximated by conventional mechanical joints.
To support more detailed analysis an enhanced joint modeling capability that in-
eludes the full complement of human joints defined by Norkin in [49 must be
developed.

Rolling/sliding contact of penetrating surfaces. This capability is needed to model
* !the details of joint motion and loading and too adequately model the soft tissue

interface contact between an operator's hand and the manipulandum used for ma-

chine control.

9 Flexible body modeling. This capability is currently available within NDISCOS. It
is required for stress distribution determination within the skeletal structure being
stressed by physical exertion. This is an important capability needed to support
the joint prothesis design problem.
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* Body clustering. This capability is needed to model joints such as the ankle and
wrist. It is also needed to model the spine. In each case, relatively small bones
are tied together by ligaments into a cluster that has limited range of motion.
The desire is to develop a general cluster capability that will be applicable for
generic mechanical system dynamics, biodynamic, and molecular dynamics research
projects.

The dynamics analysis of mechanical systems is dominated by the need to solve the
forward dynamics problem. That is, given a prescribed set of internal and external
loads, predict system response. Attempts to perform forward dynamics analysis with
neuro-musculo-skeletal -ys'ems are usually stopped by ones inability to mathematically
characterize the human's cognitive processes that generate the neural activation signals
that stimulate the body's musculo actuator system. Forwards dynamics studies how-
ever do provide the framework for the study of underlying principles controlling how
individuals optimize the natural motion of their musculoskeletal system.

7 Man/Machine Dynamic Interaction

a Figure 1 provides a flow diagram of the proposed closed loop man/machine interaction

dynamics and performance assessment process. The output of the program JACK is
animated human system response. As for any engineering analysis study, the physical " i
realizability of predicted response must always be checked. This is done by viewing
animated response and resultant joint behavior. Performance parameters such as joint
stiffness and comfort level within the JACK program allow users to tune predictions to
bring them into the realm of physical realizability for the particular population group
under study (old, young, normal, obese, handicapped, etc.) As a further check, JACK's
predicted joint response information can be used as input to the program NDISCOS. a

This program offers a functionally complete capability for analyzing models of arbitrary
complexity. NDISCOS can be used to create a detail dynamics model for the machine
and the machine operator's musculoskeletal system. The associated equations of motion
for the multibody model are exact, relative to the laws of Newtonian mechanics. The
inverse dynamics capability of NDISCOS can be used to obtain a refined prediction
for resultant joint loading. Differences between JACK and NDISCOS resultant load
predictions stem from the simplifying assumptions within JACK's motion prediction
algorithms and man/machine interaction dynamics effects.

The resultant joint load predictions made via NDISCOS's inverse dynamics capa-
bility can be used as input to a capability that addresses the nondeterministic muscle
load sharing problem. If resultant joint loading and muscle load sharing predictions are
acceptable, then motion and load prediction information is ready to be used as input
to the human performance BEP database at the HPI. The output of this step provides
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Figure 1: Clo-.,-i-Loop Man/Machine Interaction Dynamics and Performance Analysis
Assessment Process

another assessment of physical realizabty. If results violate physical realizability, JACK
performance parameters can be adjusted and the process repeated.

If muscle allocation studies are required, the skeletal system model and associated
computational theoretics will require non-trivial enhancement to include a detailed three
dimensional characterization of critical joint complexes. An understanding of detail mus-
cle load sharing is needed to explain, in a quantifiable sense, exactly why certain design
options or operational scenarios have the potential of causing machine induced discom-
fort, fatigue, pain, or trauma.

In application, the assessment process will use an iterative refinement process that
can be used until the successive approximations strategy converges to acceptable results.
The predictions either confirm that man/machine interaction is acceptable or that some
human performance parameters have exceeded database norms. If human performance
requirements are excessive, machine design changes or operational scenarios can be refined
until acceptable performance measures are achieved for the machine operator's population
group. It is also possible to incrementally change population group by selecting different
sets of anthropometric and BEP data from the database. Normally once an acceptable
set of JACK performance parameters are obtained, they should be rather insensitive to
modest changes in machine design, anthropometric, or BEP information.

The critical issue associated with the determination of an optimal scenario is the selec-
tion of a physically meaningful optimization criteria. This problem is compounded with
the need and desire to minimize time, fatigue, and machine complexity while maximizing

* throughput and efficiency. The next key issue centers on how to develop a systematic
means for determining the sensitivity of performance relevant motion parameters of in-
terest to design variables. Design variables are the system variables that the engineer
alters during the design optimization process. A
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8 Multibody Methods for Biomechanics

The inclusion of musculoskeletal loading effects for detail biomechanical analysis of action
and reaction loading effects at joints can become exceedingly complex.

The modeler must address the problem of modeling both joints and actuators. At
the coarse fidelity level joints are modeled as conventional rotational type mechanical
joints and actuators are modeled as torque producing motors. At this level of modeling
fidelity second and higher order biomechanical properties of joints and muscle actuation
are ignored. The capabilities defined within this section are designed to enable the
biomechanical modeling of the details of musculoskeletal system dynamics and associated
joint loading effects. The objective is to provide a generic capability that will allow the
biomechanics modeler to hypothesize theories to explain laboratory observations and
to computationally investigate these relative to the first principles of kinematics and
dynamics.

9 Muscle Modeling and Load Sharing

Detailed neuro.musculo-skeletal modeling of the human system or any of its subsystems
is an extremely complex problem that is beyond today's state-of-the-art capability. The
First World Biomechanics Congress in August 1990 had over 80 oral presentations on
the subjects of multiple muscle systems, biomechanics and movement organization. For-
mal reports on 46 of these presentations have been collected by Winters in [6). From
these reports and others presented at the Congress it is clear that muscle dynamics and
neuro-musculo-skeletal organization and movement modeling is a subject that will occupy
researchers for many more years.

There is great deal known about how nerve cells transmit signals, how these signals
are put together, and how out of this integration higher functions emerge [30). Nerve cells
are connected through their synapses to form functional circuits; these are organized into
the multineuronal circuits and assemblies that provide the basis for neural organization
[31]. Muscles are controlled by nerves at neuromuscular junctions, and at these points
activation signals are biochemically processed to initiate the muscle contraction process

(32].
The details of muscle modeling have several more layers of complexity. For example,

muscles are composed of muscle fibers that are differentiated by the biochemical prop-
erties that dictate their respective response speeds and resistance to fatigue. When the
muscle is innerviated, select sets of muscle fibers called motor units contract while others
remain in a rest or in an energetics recovery state. This motor unit apportionment issue
further complicates the mathematical modeling of muscle contraction dynamics as can
be seen from Hatze's complex mathematical formulation of the problem [33).

In spite of these outlined complexities in muscle dynamics modeling, progress is being
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made at a level compatible with real world application. Relatively simple mathematical
approximations are appearing in the literature that are providing a basis for understand.
ing how musculotendon systems produce force as a function of the associated reaction
dynamics of the biochemical processes that produce muscle contraction, for example (34],
[35], (36], (37], (38], [391, [40], and [41]. Also (42] contains a rather detail review of the
complexity associated with using system identification techniques to obtain the data
needed to support studies associated with joint dynamics modeling.

The incorporation of muscle dynamics into the framework of a multibody simulation
capability is a rather straight forward process if the physics of muscle contraction can be
assumed known. This has been demonstrated by Hatze in [43] and Morris in (44]. Never
the less forward dynamics can still be used when known musculo innerviation is imposed,
for example, by functional neuromuscular stimulation systems, as discussed by Chizeck in
[45]. It can also be used for well defined structured motion such as reflex response actions.
The availability of measures for the biochemical dynamics of calcium ion concentration
within the system of defining equations for muscle contraction dynamics as defined in
[33],[37], (38], and (39], provides an avenue to an understanding of the process of fatigue,
discomfort, and pain. An extensive review of this connection is available from several
papers published in a special issue on "Occupational Muscle Pain and Injury" by the
European Journal of Applied Physiology, [46] and [47].

Complexities associated with modeling muscle contraction dynamics are matched by
the problem of resolving muscle load sharing and kinematic redundancy. The presence of
redundant muscle actuators at virtually every anatomical joint implies that rules must
exist for defining how muscles share the work load. Kinematic redundancy within the
upper and lower extremety systems also presents mathematical modeling problems. Re-
dundancy in the physical system to be modeled leads to a mathematical problem with
an infinite set of solutions. This problem is resolved by optimization techniques that find
the unique solution that minimizes a user defined cost function. Zajac in [48] provides
an indepth review of the complexity associated with modeling multijoint muscle systems.
Seireg in [8] provides an extensive summary of cost functions relevant to ongoing research
in muscle load sharing at The University of Wisconsin at Madison.

9.1 Musculoskeletal Joints

In general, biomechanical joints can be modeled as conventional mechanical joints only
as a first order approximation. Nearly all joints have complex concave/convex surfaces
and compliant interfacing tissue that acts to lubricate, cushion, and limit the range of

I relative motion between the interfacing turfaces, [49] and [50
The intent of this section is to outline modeling procedures that can be used to go

beyond first order joint modeling restrictions. The basic idea is to forget about trying
to create a variety of complex mechanical joints with an associated set of kinematically
constrained degrees of freedom. Rather, simply accept the fact that musculoskeletal
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ioints have six kinematically restrained degrees of freedom; they normally do not have
kinematically constrained degrees of freedom (dof). In NDISCOS biomechanical joints
are to be modeled as restrained 6 dof joints. It is up to the modeler to decide if it is more
appropriate to kinematically constrain or viscoelastically restrain motion relative to
each- of the 6 degrees of freedom defined at each joint. This is a decision that cannot be
made a priori, it is a function of the study at hand. For example, assumptions made for
the study of muscle allocation and resultant joint loading effects during natural motion
optimization may not be valid for the study of joint motion trauma, such as fracture or
dislocation.

The human body has three types of joints: synarthrosis (fibrous), amphiathrosis
(cartaginous), and diathrosis (synovial). From a multibody modeling point of view
these have the following characteristics:

* Contiguous bones joined together at synarthrosis joints are connected with fibrous
tissue. The bone plates of the skull and the teeth in the jaw are connected at
synarthrosis joints. These allow virtually no relative movement and are normally
not modeled as joints for kinematic or dynamics analysis.

The fibula and tibia of the lower leg and the ulna and radius of the lower arm
are connected along their entire length by a fibrous interosseus membrane. This
interface is classified as an anatomical joint but it is not viewed as a biomechanical
joint within the context of a multibody modeling capability such as NDISCOS. It is
best to model the coupling effects of such connective membrane as a set of lumped
straight line passive viscoelastic couplers, each with a well defined point of insertion
and origin, defined along the length of the membrane connection.

Contiguous bones joined together at amphiarthrosis joints are connected by ei-
ther fibrocartilage or hyaline cartilage. This cartilage joins one boney surface to
another. For example, the 2 pubic bones in the pelvis and the first rib and the
sternum. Normally there is very little relative motion allowed at these joints and
relative motion effects here are normally ignored. If constraint loads at these joints
are of interest then each bone can be modeled as a single body and the connec-
tion modeled as a joint with 6 kinematically constrained degrees of freedom. The
Lagrange Multipliers developed within NDISCOS to enforce these kinematic con-

straints provide the desired joint loading information. Another option is to model
the joint s a combination of kinematic constraints and non-llnear viscoelastic re- e
straints. Again, kinematic constraint loads and viscoelastic restraint loads are
computed by straight forward computation. Cross axis viscoelastic coupling could
also be modeled if desired but this is probably not needed and support data would
be difficult to obtain.

* Contiguous bones joined together at diathrosis or synovial joints are the only
joints that allow a wide range of relative motion. At these synovial joints contigu-
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ous boney surfaces are not in direct physical contact. This means that there are no
kinematically constrained degrees of freedom. However for modeling purposes it is
frequently appropriate to make the justifiable assumption that several relative joint
degrees of freedom are kinematically constrained. Although the boney surfaces are
not in physical contact there exists a variety of different forms of tissue connection
that both cushion and limit range of motion. All of these connectivity situations

it are important. It is necessary to understand available modeling options so that the
effects under investigation can be accurately captured by the mathematical model.
It should be clear that the modeler must define the physics of the problem. NDIS-
COS simply provides the ability to study the consequences of a hypothesis relative
to the first principles of viscoelasticity, kinematics, statics and dynamics.

9.2 Subclassifications of Synovial Joints

Diathrosis or synovial joints are anatomically subclassified into three main categories
on the basis of the motions that are available. These subclassifications are: uniaxial,
biaxial, and triaxial. While these subclassifications are adequate for gross motion
discussions they need to be further subclassified if the objective is detail kinematics and
dynamics analysis via multibody methods.

a Uniaxial diathrodial joints are of two types:

- Hinge joints - These are one degree of freedom joints that allow only flex-
ion and extension about a well defined axis. The outer joints of all fingers

and toes are uniaxial diathrodial hinge joints. If included in a simulation one
restrained rotational degree of freedom and five kinematically constrained de-
grees of freedom would normally be appropriate. The investigation of joint
dislocation, hand trauma, and peak regular and irregular grasping problems
would probably require some of the 5 kinematically constrained degrees of
freedom at some of the joints to be remodeled as non-linear viscoelastically
restrained degrees of freedom.

- Pivot joints - These are one degree of freedom joints constructed so that
one component is shaped like a ring and the other shaped so that it can
rotate within the ring. The Atlas is the first vertebrae of the cervical (neck)
region of the spine. It supports the skull and rests on the Axis, the second
cervical vertebrae. The joint between Atlas and Axis is classified as a pivot

joint. While motion here is primarily rotation, motion about other axes is
frequently important to model. In many situation this joint should be modeled
as a restrained six degree of freedom joint.

* Biaxial diathrodial joints are free to move around two axes. These are subclas-
sified as:
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- Condyloid joints are constructed so that a concave surface of one bone slides
over the convex surface of the interfacing bone. Knuckle joints of the hand
and foot are examples.

- Saddle joints are constructed so that each interfacing surtace is both concave
and convex. The knuckle joint of the thumb is an example

These are normally modeled for first order analysis as 2 restrained and 4 kinemat-
ically constrained degrees of freedom. This modeling assumption forces the user
to accept the limitations associated with modeling relative rotational motion via
an Euler angle rotation sequence. This implies that the intersection of the two
restrained rotation axes is constant over the full range of joint motion. This mod-
eling limitation may not be acceptable for some problems. In these situations the
restrained six degree of freedom joint will be the appropriate modeling option.

. Triaxial or Multiaxial diathrodial joints are joints that allow three or more
degrees of relative freedom. These are subclassified as:

- Ball-and-socket joints are formed by a ball-like convex surface fitted within
a concave socket. The hip joint and the glenohumeral (shoulder) joint are ex-
amples. The ball-and-socket joints are normally modeled as three restrained
and three kinematically constrained degrees of freedom. This modeling as-
sumption forces the user to accept the limitations associated with modeling
relative motion via an Euler angle rotation sequence between the two contigu-
ous body fixed reference frames defined at the joint. This implies that the
intersection of the three restrained degrees of freedom axes is constant over
the full range of joint motion. This modeling limitation may not be acceptable
for some problems. In these situations the restrained six degree of freedom
joint will be the appropriate modeling option.

- Plane joints permit gliding between interfac-,,; surfaces. The joints used to
interface the eight Carpus or wrist-bones -.- the joints used to interface
the seven Tarsus bones of the foot are examples. The specification of relative
motion of reference frames fixed within the bones of the Carpus and Tarsus
is non-trivial. The complexity of the problem is evident from the research
papers presented in (51).

The relative motion of bones interfacing in the Carpus region of the hand
and in the Tarsus region of the foot are normally not even attempted. NDIS.
COS provides the capability to study this region if supporting data can be
developed. The key to the ability to support this problem is the capability
of NDISCOS to accept a definition of systems that include topological loops.

In topological tree problems the number joints equals the numbcr of bodies.

2o
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In topological loop problems the number of joints exceed the number of bod-
ies. The ability to define both topological loops and restrained six dof joints
provide the basis for this generic modeling capability.

9.3 Restrained Six Degree of Freedom Joints

Restrained 6 degree of freedom joints are designed to be compatible with the needs of
biomechanical joint modeling. There is a class of problems that must take into account
bone flexibility, however, we make the assumption herein that all interfacing bones at
restrained 6 dof joints are rigid. This assumption could be relaxed but at this time it
does not appear to be worth the effort.

In the terminology of the program hDISCOS relative body motion at joints is defined
by computing the relative motion of 2 body fixed reference frames. These are referred to 4
as the p- anl q- frames. The user locates these so that joint motion can be computed
in a manner compatible with motion specification needs. They are located and oriented
relative to their respective body fixed reference frames. Joint motion variables are de-
veloped to define their position and orientation relative to each other. The restrained
6 dof joint capability will allow the user to specify a continuous surface fixed relative
to the p-frame and a set of at least three points fixed relative to the q-frame. The
continuous surface relative to the p-frame lies on the undeform-.d surface of the tissue
that is fixed to the bone at the joint interface. The set of surface contact points fixed in
the contiguous body relative to the q-frame forms a coarse but yet "adequate" represen-
tation of the adjacent surface. The surface is assumed to be compliant and its linear or
nonlinear viscoelastic properties definable by the user. The position of each point fixed
in the q- frame is computed relative to its position along a normal to the surface that
is fixed in the p-frame. If the point is inside the surface there is surface contact and
the interfacing tissue undergoes compression with appropriate viscoelastic loads applied
equal and opposite at the contact point. If the point is outside of the surface, the surfaces
are not in contact at the surface contact point and the associated viscoelastic loading

Z there is taken to be zero. There is no restriction on how many surface contact points
must be in contact. The user is responsible for making sure that enough surface contact
points are defined, and the user defines "enough". In some modeling situations it may
be important to include linear or non-linear extensional viscoelastic loading, this too can
easily be incorporated.

The following list outlines associated theory. Let: fd lv

* (u, v) - Surface coordinates used to locate a point on the surface fixed relative to
the p-frame.

C(u, v) - Vector from the origin of the p-frame to the surface point identified by

surface coordinates (u, v)
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* pdq - Vector from the origin of the p-frame to the origin of the q-frame

o C, - Vector from the origin of the q-frame to the surface contact point s

o .(u, v) - Shortest vector from the p-frame fixed surface to the q-frame fixed
surface contact point s, that is,

P o(u, v) =Min[, + d, - d vu, v)]

for u, v E S where

S - region of the surface to be searched for minimum contact distance. This is
introduced to allow physical insight to limit the search region.

Once &,(u, v) is computed it defines both the + or - penetration distance and the
direction of surface interaction load application. This penetration distance is used with
a viscoelastic load determination function to determine contact load. Normally a nega-
tive value would signal penetration and hence a compression of the interfacing tissue. A
positive value would signal no contact and hence tension within connective tissue. The
location vectors C, and d(u,v) define load application points and the vector A,(u,v)
defines the direction of application. The assumption here is that sliding friction is effec-
tively zero. In biomechanics this is a reasonably good assumption since the synovial fluid

that lubricates joints is better than teflon on teflon, except in the very aged.

9.4 Viscoelastic Restraint Loads

The resultant nonlinear viscoelastic restraint loads acting at joints are the vector sum of
a number of different effects. These must be separated and modeled individually. From
the perspective of modeling two generic situation classes exist:

e Hinge load is a linear or non-linear function of the relative displacement and rel-
ative rate between p- and q- reference frames fixed in the contiguous bodies at
the hinge point associated with the biomechanical joint. Relative displacement and
relative rate data are computed within NDISCOS. This modeling option would
be the appropriate choice for modeling the joint loading contributions associated
viscoelastic properties of menisci and discs. The program NDISCOS is only in-
tefested in obtaining a bottom line resultant (6 long) force/torque vector. This will
be applied in an equal opposite manner to the contiguous bodies at the associated
hinge point. The degree of non-linear equation complexity associated resultant load
computation is of no interest to NDISCOS.

If Hinge load is a linear or non-linear function of points of insertion, origin, line of
action and of the relative displacement and relative rate of the p- and q- reference
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frames fixed in the contiguous bodies at the hinge point. The modeling of this type
,of hinge load is most appropriately done via the specification of passive viscoelastic

couplers.

The modeling of range of motion limits take special consideration. These may be
caused by a boney obstruction within the joint or by connective tissue at its elastic
limit along some line of action. The user must decide if the range of motion restraint is
best modeled as a resultant viscoelastic restraint acting within the joint, or as passive
viscoelastic couplers acting between points of insertion and origin.

9.5 Straight Lines of Action

Straight lines of action act between the point o, the point of origin on one body and the
point i, the point of insertion on the connected body. The vector between origin and
insertion defines both line of action length and direction. System equilibrium conditions
require that the sum of the load vectors applied at the origin and the insertion points
equal zero. Two load vectors are developed, one at the origin and one at the insertion.
They act equal and opposite so that system equilibrium conditions are satisfied.

9.6 Curved Lines of Action

Musculotendon tissue and other connective tissue between bones wrap over each other,
, around and over boney protrusions. Loads are exerted not only at the points of origin

and insertion but along the entire length in a direction normal to the line of action and on
the structure at the points where connective tissue contacts the surface that it is wrapped
around. Several layers of modeling complexity can be introduced to investigate this effec'
If the descriptive mathematics can be developed the effects can be incorporated.

The simple-st form of a curved line of action is a straight line with a single sharp
bend point. The bend point can be fixed on either body or on another body in
the system. The vectors from the origin and from the insertion points to the bend
point define the direction of load application at the points of origin and insertion.
The reaction load at the bend point is of such magnitude and direction that the
resultant of the three load vectors sum to zero. In a manner analogous to the
straight line of action case the triad of external loads act on the system. while
equilibrium c)nditions require that their vector sum is equal to zero.

More complex curved lines of action can be defined and their loading effects upon
the bodies that they wrap around are more difficult to define mathematically. From
the standpoint of NDISCOS, that's still the user's job. The only thing that NDIS-
COS wants to see is an external vector load set th..t vectorially sums to zero.

f
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H.--
9.7 Passive Viscoelastic Coupling

This includes all non-contractile tissue. Membrane connections resist extension but not
compression, cartilage, discs and menisci resist compression and not extension. Depend-
ing upon the situation they may act along or about any one or all six degrees of relative
joint freedom. In many situations viscoelastic loads acting relative to one degree of

freedom are uncoupled from all other joint degrees of freedom. An exception is hyaline
articular cartilage. This tissue cushions and distributes joint loads, it can be considered
to be porous and fluid filled. It acts somewhat like a fluid filled sponge. This situation
can also be modelled, however it gets a bit complex. The net result is that the resultant
joint loading vector becomes a non-linear function of all relative displacement and rela-
tive rate coordinates. Again the only thing that NDISCOS wants to see is the resultant
load vector of length 6. How it is developed is the user's problem.

9.8 Musculotendon Coupling

Numerous theories exist for the prediction of muscle contractile dynamics. It i- a user
decision to decide what's best. NDISCOS provides the user with the ability to define a set
of first order nonlinear differential equations. These are normally used in the spacecraft
world to define controller dynamics. In the biomechanical world these are used to define

tthe dynamics associated with the biochemical processes that control muscle contraction.
5 for example, via a Zahalak, Zajac, or Hatze model. NDISCOS simultaneously integrates

these equations with the equations of motion that define multibody system dynamics.
The user makes use of the muscle state variables to define the muscle contraction loads
that are to be applied to the system along either a straight or curved line of action as
defined above. Again the user must define the physics of muscle contraction, muscle

* apportionment, and motor unit recruitment problems. NDISCOS just wants to have a
resultant load and a line of action defined.

10 Summary

The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to
create an ability to study the consequences of machine design alternatives relative to the
performance of both the machine and its operator. The envisioned MMIDAP capability
is to be used for mechanical system design, human performance assessment, extrapola-
tion of man/machine interaction test data, biomedical engineering, and soft prototyping
within a Concurrent Engineering system. This chapter has reviewed the existing method-
ologies and techniques needed to create such capability. It has attempted to outline on-
going efforts to integrate both human performance and musculoskeletal databases with
the host of analysis capabilities necessary for the early design analysis of dynamic ac-
tions, reactions, and performance assessment of couplhd machine-operator systems. The

A
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mitltibody system dynamics software program NDISCOS of GSFC and Photon Research
Associates c¢n be used for machine and fine grain detail musculoukeletL dynamics model.
ing. The program JACK from The University of Pennsylvania can be used for estimating
and animating whole body human response to given loading situations and motion con-
straints. The basic elements of performance (BEP) task decomposition methodologies
associated with The University of Texas at Arlington's Human Performance Institute's
BEP database can be used for human performance assessment. Techniques for resolving
the statically indeterminant muscular load sharing problems can be used for a detailed
understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and
trauma problems. The MMIDAP problem as defined herein highlights the conflicting
needs and views of groups thai focus on machine design and groups that focus on mus-
culoskeletal biodynarics, on human performance and cumulative injury potential. An
attempt has been made to show that there is a critical need to integrate design and
simulation tools and to establish multidisciplinary lines of communication. Futhermore
an ou.)ine is provided of planned integration efforts for human performance analyses, as-
sociated databases, and mf. hanical system design capabilities. This integration effort is
expected to provide an ability to perform both stand alone studies and the early system
trade studies needed to assess man/machine interactic,% ,vnamics and performance.
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FLEXIBILITY EFFECTS IN MULTIBODY SYSTEMS

R.L. HUSTON
Y. WANG
Mechanical, Industria and Nuclear Engineering
University of Cincinnati
Cincinnati, Ohio 45221-0072
USA

ABSTRAC. This paper summarizes procedures for studying flexible multibody
systems using finite segment modelling. In these procedures flexible members of
multibody systems are themselves modelled as multibody (or "lumped") systems. The
flexibility is then modelled by springs and dampers between the bodies. Although
the method has the disadvantage of being computationally intensive, the procedures
presented are intended to ease the computational burden by efficient modelling and
by efficient analytical formulations. It is believed that this approach combined with
finite element and modal analysis methods can provide a comprehensive global and
local analysis. Two examples are presented.

1. Introduction

Of all the features and phenomena associated with multibody systems the most
difficult to model are the flexibility effects. Flexibility effects can significantly change
the dimension of the governing dynamical equations and, hence, also the form of
their solutions.

The modelling difficulties stem from several snurces: First, for flexible bodies it
is necessary to make both physical and geometrical approximations of the elastic,
plastic, or viscoelastic effects. These approximations in turn raise issues regarding
the consistency of the approximations and of their effects upon the accuracy and
meaningfulness of subsequent analyses. Next, the flexibility effects greatly increase
the number of variables required in the analysis, and thus the cost of the numerical
analysis is greatly increased. Finally, the inclusion of flexibility effects involves a
marriage of classical analysis (that is, with rid bodies) and structural dynamics.
This means that assumptions used in the classical analysis are violated - specifically
those related to invariant geometry of the bodies.. Thus, the implications of these
violations need to be considered. i '-
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Figure 1. Two Bodies Connected by a Slender Flexible Member

of BI, but also upon the flexib-lity of B2. This flexibility may be modelled by
replacing B2 by a chain of finite segments connected by springs as in Figure 2. In

* general these springs will represent the torsion, flexure and extension properties of
the slender body. By such modelling a comprehensive representation of the behavior

7of the slender member can be obtained including even large deformation effects.

Figure 2. Finite Segment Model of a Slender Body

The disadvantage (or "cost") of such modelling, however, is a dramatic increase in

by say N segments then the number of degrees of freedom may be increased by 6N.
The numerical effort to solve the ensuing governing equations is then greatly.
increased.
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These difficulties have stimulated a vast variety of approaches in multi-flexible-
body analyses. -The references represent only a sampling of the'many writings on the
subject.

The methods of these analyses can generally" bc divided into two categories 1)
those which focus upon the flexible bodies while using the global multibody motion
as a source of dynamic loading, and 2) those incorporating flexibility effects into the
multibody dynamics analysis - the so called "lumped parameter" or "finite segment"
aiproach. The method of analysis presented herein follows tis second approach.
We believe this approach has several advantages: First, it is intuitive and direct,
resulting in a relatively simple formulation. Next, it is general and applicable with
a broad class of multibody systems. Finally, the approach is "algorithmic" in that
numerical procedures are readily developed from the governing dynamical equations.
A disadvantage of the approach is that it can be computationally expensive. We
believe, however, that this difficulty can be overcome by efficiencies in the
formulation of the governing equations and by advances in computer technology.

In what follows we first review multibody system modelling and analysis
procedures. We then consider the means of incorporating slender flexible bodies
into the analysis. Finally, we present results of analyses of two simple systems.

a, '1

2. Modelling

A multibody system is simply a collection of bodies with a given connection
configuration. The bodies may be rigid or flexible. They may be physically
connected (as with pins or spherical joints), or they may be separate (as with spring
connections). Finally, the bodies may form a closed loop, or they may be open (as
in a "tree").

The form and characteristics of a multibody system determines the complexity of
a dynamical analysis of the system. Open and physically connected systems of rigid
bodies are the easiest to study. An extension of such an analysis to accommodate
separating bodies is relatively "straight forward". An extension to accommodate
closed loops, however, is somewhat more difficult in that constraint equations then
need to be developed. These equations are usually algebraic so that when they are
combined with the dynamical equations a coupled system of differential and algebraic
equations is obtained. Finally, extension to include flexibility effects are the most
difficult in that assumptions about the flex:,bility need to be made. Such assumptions
can dramatically affect the accuracy of the modelling and the subsequent numerical
analyses.

Flexibility effects are generally important if the multibody system is physically large
and massive, if it contains slender bodies, or if its members undergo high
acceleration. Consider for example the three body system of Figure 1 consisting of
two rigid bodies B, and B3 connected by a slender flexible member B2. Suppose thej motion of B, is specified. Then the motion of B3 depends not only upon the motion 5
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In the following part of the paper we present a method of analysis which is

intended to mininize this numerical effort. The method is based upon established
procedures of multibody dynamics and the procedure outlined in Reference [30].

3. Analysis

3.1 BODY ORIENTATIONS °

Consider two typical adjoining bodies of the system as depicted in Figure 3. Let the
bodies be called B, and Bk ,aid let ni and n. (i = 1,2,3) be sets of mutually
perpendicular unit vectors fixed in B, and Bk. Then the relative orientation of B. and
Bk may be measured by the relative inclinations of the unit vectors. Specifically, let
SJK be the orthogonal matrix whose elements SJY,. are defined as:

F gn

a I

kBk k n

Figure 3. Two Typical Adjoining Flexible BodiesIi

The unit vectors are then related to each other through the equation

n =SfCn,. (2)
I

(Regarding notation, the J and K in SJK and the first subscripts on the unit vectors

refer to the bodies Bj and Bk. Repeated indices such as the m in equation (1)
represent a sum over the range of the index.)
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3.2 EULER PARAMETERS

The elements S.K may be expressed in terms of relative orientation angles between
the bodies in a variety of ways (see for example, Reference [51]). From a
computational perspective, however, analysts have found it to be more convenient to
express the elements of SJK in terms of Euler parameters [54, 58]. The advantage
of using Euler parameters is that they are linearly related to the comporiats of the
relative angular velocity of the bodies. [Orientation angles are nonlinearly related

a to these components (through trigonometric functions). In some configurations of
the bodies these nonlinear relations allow singularities to occur and these
computational difficulties are experienced in the numerical integration of the
governing differential equations.] A disadvantage of using Euler parameters is that
four variables are required to define the relative orientation of the bodies whereas
with orientation angles only three variables are needed. Therefore, with Euler
parameters the number governing differential equations to be integrated is increased.
However, this is generally preferable than contending with singularities in the
equations.

" I To define the Euler parameters, let Bk have a general orientation relative to B.
Then Bk may be brought into this orientation from a reference orientation by a single
rotation about an appropriate axis. If k is a unit vector parallel to this axis and ifek
is the rotation angle, then the relative Euler parameters of Bk are:

e 1 W = sin (ek/ 2 ) i = 1,2,3 and 6. = CoS (Ok/ 2 ) (3)

where the X., are the nil components of I.
From a geometrical analysis outlined in Reference [58] the matrix SiX may be

expressed in terms of the % as:

2 2 2 2
(kI - - Ek + 44) 2(ekel - ek-ekd -Ck2 k3 + cik4)J

S3K = 2(eklela + ek~ek) (-Ekl +6~ C + et) 2(elaek - ekjek)

i. 2(ek1el - Eie 2(ejaek + clackd (-CkI Ek2 + C2 3+ EL)i

(4) a

The ek are not independent: Frori equations (3) they are seen to be related by
the expression

> k. + Ga + 1 (5)
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where now the Cak measure the angular velocity of Rk relative to RJ. Let the
remaining 3N Yt be defined as

Y3(~k-l= + i  i = 1,2,3; k= I,...,N (10)

where the , are defined in equation (8).
The Yp are called "generalized speeds" [52]. They are not always integrable into

elementary functions. That is, in general, there do not exist individual orientation

functions 61 whose derivatives are &,. Instead, the (, are linear combinations of
orientation angle derivatives, or of Euler parameter derivatives, as in equation (7).

3.4 GLOBAL KINEMATICS

The global kinematics of a multibody system may be developed using parameters
outlined in Reference [30]. Specifically, the angular velocity wk of a typical body Bk,
in a Newtonian reference frame R, may be expressed in the form

G")k =  &)I +  ""+  &k ( 1

where the terms on the right are relative angular velocitie, through the adjoining
bodies from B1 to Bk. By using equations (9) and (11), cai may be expressed in the

form

Wk 
=  imY, n., (12)

where the w., (k = 1,...,N; t = 1,...,6N; m = 1,2,3) form a block array of

coefficients representing scalar components of the "partial angular velocity vectors"
used with Kane's equations [49, 50, 52] and where the n. (m = 1,2,3) are unit
vectors fixed in R.

By differentiating, the angular acceleration of the bodies may be expressed as:
V a = (dumY, +1 (,) 'Y)n. (13)

(13
Explicit expressions for the C and (bkft arrays, together with efficient

algorithms for computing them, are recorded in References [54, 58, 59, and 60].
Let Gk be the mass centir of Bk and let Pk be a position vector locating Gk relative

to a fixed point in R. Then Pk can be expressed in terms of vectors fixed in the
bodies of the branches containing Bk and in terms of the displacements between the
bodies. The derivatives of Pk produce the velocity and acceleration of Gk. These
derivatives may be evaluated using vector products and procedures recorded in
References [54, 58, 59, and 60]. The results may be expressed in the forms
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Finally, using the procedures of Reference [58] the e are related to the relative
angular velocity vector components as: -

ikl (EMe - d+ EU 2 Ci 6k3 ee)

2

I ,

t.d = + C-Eja, a - 1%t 6j, + %k460k (6)
2g

iM k k1 ( -e ia d - k3 4k3)

~and

+ 0k3 - 2(-cltkI + ektta + ektzd - eiC'M)

where the Coj, (i =1,2,3) are the nji components of &k, the angular velocity of B.
~relative to B,.

3.3 CONFIGURATION VARIABLES AND GENERALIZED SPEEDS

Consider again the two typical adjoining flexible bodies of Figure 3. Let Qk and Ok
be points of the respective bodies which are coincident with each other when the
bodies are undeformed. Let be expressed in terms of the unit vectors of Bj as

! k =  (8)

Let Rj and Rk be reference frames fixed in the undeformed states of B, and B k.
Then the deformations of B, and Bk may be measured locally in R and Rk. From
a global perspective the movement of Bk relative to Bj may be measured by the
translation and rotation of Rk relative to Rj. Thus for a system with N bodies 6N
coordinates are needed to define its configuration and motion (6 for each body: 3
translation and 3 rotation). Let these coordinates be Xt (t = 1,...,6N). Next, let Y,

= 1,...,6N) be introduced as linear combinations of the derivatives of the Xt as
follows: Let the first 3N Yt be defined as

Y30-I)-i = i = 1,2,3; k= 1,...,N (9)
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Vk= v.,Yn., (14)

and

= (v Y, Y. ,)n (15)

where the Vkt= (k = 1,...,N; 4 = 1,...,6N; m = 1,2,3) form a block array representing
scalar components of the "partial ve'ocity vectors" [49, 50, 52]. Explicit expressions

for the vkf and %, arrays, together with algorithms for their computation, are also
recorded in References [54, 58, 59, and 60].

3.5 KENETICS/EQUATIONS OF MOTION

The equations of motion are readily obtained using Kane's equations. Using the
formulation of the foregoing kinematic analysis, Kane's equatons are ideally suited
for obtaining equations of motion for large lumped parameter systems. Kane's
equations state that there is a balp'ice (o: "zero sum") of the generalized applied and
inertia forces. These generalized forces are defined as a projection of forces and
moments onto the partial velocity and partial angular -,.,iocity vectors.

Specifically, let the applied forces on a typical body Bk be equivalent to a force Fk
passing through the mass center Gk together with a couple with torque Mk. Thus the
generalized applied (or "active") force on Bk, as ciated with the generalized speed
Ye, becomes

F4 =VF ., .(16)

where Fk. and Mk. are the no. components of Fk and Mk and where, as before,
there is a sum over the repeated indices.

Similarly, let the inertia forces on Bk be equivalent to a force Fk passing through

G k together with a couple with torque M Then, as in equation (16), the
generalized inertia force on Bk, associated with the generalized speed Yl, is

where F;. and Ml. are the nam components of F and M.
' From the principles of classical mechanics F; and M; may be written in the

forms:

i 4' 7
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22,
I

= -mkak and A 4 X (no sum) (18)

where ink is the mass of B. and Ik is the central inertia dyadic of Bk.

In equations (16) and (17) there is no sum on k. However, the generalized forces
for the entire system are obtained by adding the contributions from the individual
bodies. Hence, the generalized forces for the entire system are obtained by summing
on k from I to N in equations (16) and (17).

The governing dynamical equations may be obtained using Kane's equations [50,
52] which state that

F, + Ft = 0 9= 1,...,6N (19)

By substituting from equations (12) through (18) into (19) the equations may be
written in the form

aY = 1 (,, = ,...,6N) (20)

where the atp and ft are
a= + I C acr (21)

and
ft = F1 - (mkVU..bpYq + It.6k.FY q

+ eC.I W bjIo3 YpY (22)

Equations (20), (6), (9), and (10) form a set of 13N first order differential equations
for the 6N Yp, the 3N fi, and the 4N emd. Since the coefficients atp and ft of

equations (20) depend upon the four block arrays wt., 6U., v., and O and
since efficient algorithms have been written for the computation of these arrays,
algorithms can be written for the numerical development and solutions of equation
(20). (One set of such algorithms forms the basis for the program DYNOCOMBS
[60].) " .

* The flexibility effects, which are the focus of this paper, enter the governing
equations through the Ft of equations (22). We take a closer look at these terms
in the following part of the paper.
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4. Flexibility Effects/Slender Members

4.1 GENERAL PROCEDURES

With our finite segment modelling the flexibility effects are modelled by springs and
dampers between the bodies. With the generalized forces defined with generalized
speeds which are relative angular velocity components and relative displacement
derivatives, the spring and damper force and moment components occur singly in the
governing equations. That is, with the generalized speeds definer' as in equations (9)
and (10), the governing equations are uncoupled in the spring and damper force and
moment components.

To demonstrate this we follow the procedure outlined in Reference [30].
Specifically, consider again the two typical adjoining flexible bodies depicted in
Figure 3. If 4k measures the displacement of Ok :elative to Q1,, then the velocity of
0 k in W" inertial frame R may be expressed as:

v = v4+ wx 4 n (no sum on j) (23)

where %Q is the velocity of Qkin R. If Jjis smallor ifQkis that point of Bj(or Bi
extended) which coincides with Ok, then equation (23) reduces to

~Ok =v~(24)

6~iliiariy, th an, ilar velocities of the bodies are related by the expression

Wk (kJ + kE J + kiN (25)

Let the force system exerted by the springs and dampers between the bodies be
equivalent to a single force (k passing through 0 , together with a couple with torque

m~k If this is the force system exerted on B. by B., then by the law of action-reaction
16]the foc yte xre on B,,byBi i quivalent to a single force - tk passing
Consider the contribution to F, from these force systems: From equation (16),

this contribution F may be expressed as [28, 29, 30]
tkI F,= (VQkOY.) fk + (aayaY 1) Mk

J

+V (avY, (As) +(a.\/8Yd (-Mk) (26)

Consider the following cases:
Case 1: YE is not equal to either 4. or ea. Then from equations (24) and (25),

the partial velocities and partial angular velocities of equation (26) are equal. That
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is,

avQaY, = avo,/aY and a =/aY= aokaYl (27)

Hence, f: )m equation (26) in this case P, is zero.
Case 2: Ye is equal to one of the iki. Then from equations (24) and (25), the

partial velocities and partial angular velocities are

ajVQIY 1 = ai/aYl = ak/aY = 0 (28)

and (9avol/aY, = avo/aIt = n (29)

Hence, from equation (26), the contribution to Fe is

_f., (30)

where fi is the nj, component of f"* fCase 3: Yt is equal to one of the & . Then from equation (24) and (25), the
partial velocities and partial angular velocities are

avzQkaY, = avolaY, = 8rjlaYl = 0 (31)

andl = 
8

kl O(ak/ak (32)

Hence, from equation (26), the contribution to Fe is

S= -mj (33)

where mji is the nip component of mk.j The contributions of equations (30) and (33) are to be inserted in the generalized
forces of equation (16). It is seen that there is a one-to-one correspondence between
the joint force and moment components and the individual Ft. Thus, these
components occur singly in the governing equations.

4.2 LOCAL KINEMATICS

Long slender members manifest flexibility effects more dramatically than nonslender
bodies. Therefore, to illustrate the foregoing procedures and to provide an analysis
for the most significant of the flexible bodies we will focus our discussion upon
slender members.

271

..........



1 4

Figure 4. Flexible Beam and Model

Consider the flexible beam and its model as depicted in Figure 4. Consider two
typical adjoining segments as in Figure 5. Let Gj and Gk be the mass centers of
segments B1 and Bk and let Rj and Rk be reference frames fixed in B, and Bk with

origins at Gj and Gk. Let 6, and 6k be points at the connections between the

springs and dampers of the adjoining bodies as shown (see also Reference [30]). Let lki

and Ak be reference frames with origins at 6, and 6k which are parallel to P, and
Rk when the beam is undeformed.

A With this modelling and nomenclature there are 12 displacements and rotations
associated with each segment - six at each end. When the beam is undeformed, all
the reference frames are aligned. Then as the beam deforms, the reference frames

translate and rotate relative to each other. For B, the displacement of 6, relative

A

/0 !G 2 G k 1/Q 2

Figure 5. Typical Adjoining Beam Segments and Reference Frames

to Gj may be expressed in terms of three parameters and the rotation of A, relative
to B, (or R) may be described in terms of three Oarameters. Similarly, the
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Variable Notation

Displacement of 61 relative to G . UJk, UJlj- 1jl z

Rotation of AJ relative to R eilko oily, eJl.

Displacement of 6 k relative to GU Up, uJ2y, Up.
Rotation of ]k relative to R, e, 'J2y .0z

Displacement of Rk (or Bk) relative to R, (or B) 6 O fkzRotation of Rk (or Bk) relative to R, (or B) 6' 5 ky I "

Table 1. Displacement and Rotation Parameters and Notation

displacement of 6 k relative to Gj and the rotation of 1k relative to B. (or R-) may
be described in terms of six parameters. Table 1. presents a summary listing of the
parameters and notation (see References (30] and [58]). Regarding the notation, thefirst subscript of ujl, refers to the segment, the second refers to the segment end and

the third refers to the direction. The over hat of 0. signifies a relative
displacement.

With this notztion, the displacement and rotation of Bk relative to Bi may be
ex---ssed in terms of the end displacements and rotations by the expressions:

i. =UJ U , 1ky UI2y -uky fii , = uj t2 -uka (34)

6kM - eJ2z - 0klz 0 ky = J2y - kly' 6h = ej2 . - Oklz (35)

Observe that although there are 12 local displacement and rotation componentsassociated with each segment (6 at each end), there are only 6 relative displacement

and rotation components.

4.3 STIFFNESS COEFFICIENrS

For elastic segments the principles of structural analysis may be used to determine
the relation between the force and moment components and the displacements and
rotations. To illustrate this procedure, consider the tapered segments depicted in
Figure 6. Let the segments be subjected to tension forces as with typical segment B,. t
Let the extensibility be modelled by extension springs at each end with moduUi41
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and k4. Let C, be the segment mass center and let p,, and p,2 be the distances
from C, to the segment ends. Let A,,,, A421 and A, be the segment cross section areas
at the ends 1 and 2 and at the mass center.

A12

c P

Figre 6. Tapered Flexible Segments

Let the tapered segment be subjected to extensive force F producing displacements
ul and ui2 at the ends. Then relative to a reference frame fixed at the mass center
u,, and ui2 are

Ui -Fpilhl(AIl/Ad)/ (Ei(Ail - Ad)] and ui = FpU2&(AU/Ad)iIAu-A)

(36)

where E1 is the elastic modulus.
The geometrical parameters A11, A,2, k-~, p,,, and pi2 are not independent.

Specifically, if A,,, A,2, and the segment length L, are known, then A,,, pil, and pi2 are

Ad1  (2I3)(4A + AiA 12 4 2A)II+ A12)

pi1  ( /3)(AI2 + 2AO1 I(Ail + A12) (37)

P12  (Oi/3)(2AL2 + All)/(Ail A12)

The spring moduli, the displacements, and the loading force are related by the
expressions:
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(38

F =-ku 1  and F (38)

By comparing equations (36) and (38) we obtain the moduli as:

Iki' = E1 (All - A,)/[puln(Atl/A)] and k 2 = Ej(Aj2 - At)/[p12ga(At2/A,)]
4 (39)

If the segment is straight, the analogous moduli may be obtained from equation
(39) by letting

Ail = A 12 = Ad1 = A. and Pi1 = P12 = 0f2 (40)

The results are

k 1 = l = =2EAI/E (41)

Finally, the equivalent spring modulus k, for the spring segments in series is:

f 4 2 k1 P,E1  (A jl - -4--.0 0 4 2  - A )( 2
(14+ [E(Ai 2 - Ac)Pi ) Ej(Aj -AcP12

For straight segments k1 then becomes:

4J = 2ELEjAAj/(EAt'j + EJAJI) (43)

Using similar procedures the spring moduli for segments in flexure and torsion may
be obtained. The Appendix contains a comprehensive listing of the results.

5. Examples

For an example illustrating the efficacy of the method, consider a uniform flexible
beam attached to a rotating hub of radius r as depicted in Figure 7. Let the beam
be divided into 20 equal length segments connected by flexural springs with stiffness
developed following the procedures of the foregoing section.

Consider first the case with the hub at rest. Then the efficacy of the modelling can
be checked by comparing the natural frequencies of the finite segment model with
those computed from a classical continuum model. Table 2 presents a comparison
with a measurement of the error for the first 10 modes. The units of the natural
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Figure 7. Beam Attached to a Rotating Hub

frequencies are (ET/pI4)'
t 2

, where E is the elastic modulus, I is the second moment

of area of the beam cross-section, p is the mass density per unit length, and t is the
beam length.

Mode Continuum Model [66] Finite Segment Model (percent error)

j1 3.5156 3.5120 (0.1%)

12 22.0337 21.9471 (0.39%)
3 61.7010 61.2960 (0.66%)

4 120.9027 119.7999 (0.91%)
5 199.8595 197.5090 (1.18%)

6 298.5!55 294.2310 (1.45%)

7 416.9908 406.7571 (1.73%)f8 555.1652 534.8156 (2.04%)
9 71$.0789 696.0192 (2.39%)

110 890.7318 1 865.7742 (2.80%)

TbeContinuum and Finite Segment Models '
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Consider next the case of the hub starting to rotate from rest to an angular speed
of 6 radians according to the expression

(2/5)[t - (7.5/7r)sin (it/7.5) rad/sec 0<t<150 = (44)

6 rad/sec 15:t<30

Let the hub radius r be zero; let the beam length t be 10 m; let the elastic modulus

E be 7 x 1010 N/rm; let the second moment of area of the cross section I be

2 x I0"7rn; and let the mass density per unit length p be 1.2 kg/m. Let the beam
be modelled by 10 segments.

0.00 -

j 
_-0.10-

" - 0 .2 0 ,

E

-0.30-

.- 0.40,

-0.50

-0.60'
o . o . . .o1 0 i o .0 s . o 2 0 .0 0 5 .o 3 .0o

Figure 8. Rotating Beam Tip Displacement

Figure 8 shows the results for the tip displacement. The results are seen to compare
favorably with those of Kane, et al. [34].

6. Discussion and Conclusions

These examples demonstrate the efficacy of the finite segment method for modelling

flexible multibody systems. The examples show that accurate representations of
flexibility - a phenomena of continuous, deformable bodies - can be simulated by
discrete, rigid systems.
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The success of flexibility modelling with finite segments then forms the basis for
the simulation of large flexible multibody syster - particularly those with significant
inertia loading.

The finite segment modelling method is not restricted to elastic systems. Indeed,
the method may be used to model viscoelastic, plastic, and even nonlinearly elastic
systems. The accuracy of the modelling increases as the number of segments is
increased.

There are two principal disadvantages of the method. The first and most obvious
is the computational burden. Although simulation accuracy is improved with an
increasing number of segments, each additional segment can increase the number of
equations to be solved by six second order or thirteen first order differential
equations. This burden can be overcome somewhat by increased computer capability
and by greater availability of super computer systems. The computational burden
can also be reduced by more efficient modelling and by the development of efficient
algorithms for numerical analysis. It is believed that the procedures presented herein
form the basis for such efficient modelling and algorithm development.

The second disadvantage of the finite segment method is that it requires increased
skill, insight, and intuition on the part of the analyst. These attributes are difficult
to transmit from one analyst to another. Improved software [67] and greater
experience of analysts are likely to diminish this disadvantage.

Finally, it is the writers' opinion that the full capabilities of the method are yet to
be developed. For example, the combination -.f the method with the well established
finite element method and with the emerging method of computer graphic modelling,
is likely to lead to new analyses which are more comprehensive than heretofore
deemed feasible.

7. Appendix: Stiffness Coefficients for Elastic Straight and Taper Segments

The following listings provide stiffiess coefficients (moduli) for various combinations
of elastic straight and tapered segments. The listed values could be of use in
software development and in specific simulations.

7.1 STRAIGHT SEGMENTS

Extensional segment
ki -k5 2EA/ t.

let kj fi: length of the segment

A-1  E,: Young's modulus

A,: cross sectional area
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Torsional segment
Ict  G1 ' G 4 l: shear modulus

J,: centroidal moment of inertia

Bending segment

k b I,:jbk moment of inertia of the
cross section

7.2 COMBIED STRAGHT SEGMENTS

Extension

kj= 2EjEA/(EA-fj + EJA,t)

Torsion

k~j =2GGjJ1Jj/(G1J~jtj+ GJjtj)

j Be:nding
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7.3 TAPERED SEGMENTS

Extensional segment

e7 E1  Vi ke2 =E.(Aa-A.)/[pulf(A,2/A,,j]

12 A = (2/3)(A. 1 + A,1A12+ A?2)/(A. 1 +A,2)'CA Pjii(ti/3)(Aa+2Aii)/(Aii+A,2)
P, ~ i P a=tl)2,+A,)(,,A

a-iA 2  ti: length of the segment
A1  A01 E:Yug' ouu f h emnAil : osgs seonles t rghetan

left ends respectively.
A,,: cross sectional area at mass center c

To.-sional segment

G1  Q - Gj(Jiz-J.)/[paIn(ja/J)]

kt kt Jd= (2/3)(J?1 +J,,2j /l+ j,2)

t 1  G,: shear modulus of the segment
11 Pi j~2 centroidal moments of inertia

'Ji2 at both ends
CI I3ei . centroidal moment of inertia

at mass center c,

Bending segment

i 2 IcI..( 2 / 3 )(I~~ + I1'a2j? ')/(1,1 +1,2)
012

xOc, pPI, 2 moments of inertia at both ends
11 IC: moment of inertia at mass centerc

Li2
1

i1

a I 280



7.4 COMBINED TAPERED SEGMENTS

Extension

k',,

ei =EjEj(Ajl-Ag)(Ai27A.)/[Ei(A 2A.),jl(A 'Aj+ Ej(AI-A,)P-2 n('t 2/A )]

* Torsion

U.k.

k GiGj(J1-Jj)(Jn*-J)/[G(j,2jd,)plL(jj/j,) + Gj(JjI-Jq,)p Jn(Jj /J~)

Bending

Ej + E~~~~~jlj-dp lnl21 j
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7.5 COMBINED STRAIGHT AND TAPERED SEGMENTS

Extension

* kj= 2E.EA(A 1.Aq)/[ljE (A11 A,-A-) + 2E.Ap j n(A,,/A)I

Torsion

, .

1

k= 2 GiGjJi(JjlqJ)/[IGj(Jj-J) + 2GJJpjln(Jj,/Jq)]

Bending
•k

1 kbj =2EE-(IjrIq)/[lE(Ij-Ij) + 2EIip 1ln(- /Ij3)]
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,- KINEMATIC AND DYNAMIC SIMULATION OF RIGID AND FLEXIBLE
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University of Navarre and CEIT
Manuel de Lardizdbal 13
20009 San Sebastidn 4
Spain

ABSTRACT. Multibody systems are quite often a complex combination or assembly of mechanical
elements with very different mechanical behavior, rigid or flexible, linear or non-linear. etc. Sometimes it
can be very difficult to carry out an efficient dynamic simulation with a s;ngle software package.

In practical applications, some bodies are so small and rigid that flexibility effects can be neglected
safely, with the benefit of an improved numerical efficiency. In some studies, other bodies -such as the
main hull of a car or a spacecraft- shall be considered as flexible and, because of their complex geometry
and relatively high stiffness, finite elements and modal superposition techniques are the most suitable way
to consider small, elastic deformations, superimposed to large rigid body rotations and displacements.
Finally, some bodies -as spatial booms or other very slender appendages- can be very flexible and
experiment large (elastic) deformations and -probably- other second order or coupling effects, that can not
be capttired with linear methods, such as the standard mode superposition; in this case, large rotation
theory of beams and shell finite elements is probably the most suitable solution.

This paper will describe a simple and efficient methodology that, by the use of a common set of
variables, allows a unified study of multibody systems, where the three types of mechanical behavior
described before coexist. This formulation is independent of the system topology, being able to deal with
open and closed loops, and even with variable or changing topologies. The position variables used to
simulate all these mechanical behaviors (rigid and elastic bodies, small and large deformations), are
Cartesian coordinates of points, Cartesian components of unit vectors, joint coordinates (optionally) and
modal coefficients (optionally). The use of a common set of Cartesian and global variables makes very
easy the task of formulating the constraint equations. The resulting formulation is then very simple, general
and efficient. An example of a complex mechanical system will be presented.

1. Introduction

In the last two decades a great deal of research has been done in computer simulation of
complex multibody systems (MBS), most of them summarized in recent books by

ILNikravesh (1988), Roberson and Schwertassek (1988), Haug (1989), Shabana (1989),fHuston (1990), Amirouche (1992) and Garcia de Jal6n and Bayo (1993). As a result of~~this research and of the necessity of practical solutions in the industry, several general-

purpose computer programs have been developed (Schiehlen (1990)).
In the last few years, a great emphasis has been put on the efficiency of the methods of

analysis. In kinematic simulation, interactivity is a very desirable capability of any pro-
-11; 2 gram, and in the dynamic case large systems of non linear differential equations must be I,-
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I
integrated as shortly as possible, even in real-time. Looking for this improved efficiency,
some authors have developed symbolic methods for the derivation of the motion differ-
ential equations. When applicable, the symbolic formalisms have superior performance
than the fully numerical formulations, but until now the latter remain the only general
approach to the dynamic simulation of complex 3-D multibody systems.

This paper has as main objective to summarize some developments carried out by the
team in the University of Navarre and CEIT (San Sebastiln, Spain), in close collabora-
tion with Prof. Bayo, in the University of California (Santa Barbara, USA)

1.1. CHOICE OF DEPENDENT COORDINATES

In a multibody system independent coordinates only determine actually the position of
the input links. The position of the remaining links can be determined through the solu-

* tion of the position problem, and the difficulty arises because this problem is non-linear
and there are many possible solutions. This is the reason why it is necessary to use an ex-
tended set of coordinates, called dependent coordinates, that determine unambiguously
the position and orientation of every body in the system.

Dependent coordinates are related by a system of nonlinear algebraic equations, the
constraint equations, that play a very important role both in the kinematic and dynamic
analysis of MBS. The kind of dependent coordinates used determines the number and
complexity of the constraint equations, and thus the implementation effort and the com-
puter time needed to solve practical cases.

[ i It can be found in the bibliography that there am two main kinds of dependent coord-
nates: relative -or joint- coordinates and reference point -or Cartesian-coordinates.
With relative coordinates the position of every body is determined with respect to the
position of the previous one in the kinematic chain, using as many parameters as degrees
of freedom of relative motion that are allowed by the pair that joins them. The number of
relative coordinates is minimum among dependent coordinates, but they are more corn-
plicated to implement. With these coordinates the constraint equations arise from the
closure of the independent kinematic loops. In open chain MBS relative coordinates are
independent and so there are not constraint equations.

Reference point coordinates determine separitely the position of each body through
the Cartesian coordinates of a point and three or four parameters (usually Euler angles or
Euler Parameters) to define its angular orientation. The number of reference point coor-
dinates is higher but they are easier to manipulate. In this case the constraint equations
arise from the kinematic joints that limit the relative motion of contiguous bodies.

Sometimes, it is interesting to use relative and reference point coordinates simultane-
ously. The resulting dependent coordinates are called mixed coordinates. Some relative
coordinates, when selectively added to a full set of Cartesian coordinates, allows very
simple implementation of actuator forces and/or torques, torsion springs, controls, etc.

+ i Some authors, as Kim et Vanderploeg (1986a), use successively both systems of de-pendent coordinates, trying to gather the advantages of Cartesian coordinates (better and

simpler user interface) and relative coordinates (easier control of relative motion and im-
proved efficiency). This idea is very useful to improve the efficiency taking into account +,
the MBS topology, as will be seen later on in this paper.

The MBS team at the University of Navarre and CEIT has introduced a new class of
dependent coordinates, fully Cartesian, that they called natural coordinates. With these -
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coordinates the position of a body is determined by the Cartesian coordinates of some
points and the'Cartesian components of some unit vectors rigidly attached to this body.
At least two points and one non co-linear unit vector are necess :)y, in order to define
completely the motion of the body, and no angular coordinates are needed. With natural
coordinates the constraint equations arise mainly from the rigid body condition of the
links, and secondarily from some kinematic joints.

The modeling of a three-dimensional mechanism with natural coordinates can be car-
tied out following these general rules and recommendations:

1 . The bodies must contain a sufficient number of points and unit vectors so that their
2 motion is completely defined.
2. In each link, at least one point must be located on the axis of each joint of the link that

has a preferred direction, such as revolute, cylindrical, prismatic or helical joints. A
point shall be located on those joints in which there is a point common to the linked
elements; this point can be shared.!3. A unit vector must be positioned at those joints having a rotational or translational

axis, and should have the direction of the corresponding axis. Sometimes, the role
performed by a unit vector can also be performed by a couple of basic points.

4. Some joints, such as the universal and gear joints, have their own particular require-
ments concerning the introduction of points and unit vectors.

5. Each unit vector is associated to a specific basic point, and the same single unit vector
can be associated to several basic points. For example, on the robot's arm of figure 2,

1 2 there are three rotational joints whose axes have the same direction; it is not necessary
to enter thre different unit vectors.

6. All points of interest, whose positions are to be considered as a primary ,,nknown
variable of the problem, can likewise be defined as basic points.

The fully Cartesian or natural coordinates have some interesting features, that are
convenient to summarize at this stage.

1. Natural coordinates are composed of purely Cartesian variables and therefore they are
easy to define and to represent geometrically.

2. Natural coordinates can be defined at the joints and then shared by contiguous bodies,
contributing to define the position of both bodies and significantly simplifying the
definition of joint constraint equations. At the same time, the total number of vai-
ables is kept moderate.

,'3. With other kinds of coordinates it is necessary to keep two sets of information: the
variables that define the position and orientation of the reference frame attached to
the moving body, and the local variables that define the body geometry (position and
orientation of axis, etc.) with resp.ct to the moving frame. With natural coordinates, a
single set of variables define the geometry and the position of the body, directly in the
global reference frame. It is only necessary -to keep some constant values -distances,
angles, etc.- that are independent of the reference frame.

4. With natural coordinates the constraint equations that arise from the rigid body and
joint conditions are quadratic (or linear), so their Jacobian (matrix of partial deriva-
tives) is a linear (or constant) function of the natural coordinates.

5. Natural coordinates can be complemented easily with relative angles and distancesp" + "-defined at the joints, to yield a mixed set of Cartesian and relative coordinates. Then. -' ,
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to drive an angle or a distance, and to define forces and/or torques in joints become
rather straightforward. Relative coordinates also simplify the task of defining the
constraint equations for some particular joints, such as the helical and gear joints.

6. In the constraint equations arising from natural coordinates, the design variables
-lengths, angles, etc.- appear explicitly, not hidden by coordinate transformations.
Thus, parametric and variational design, kinematic synthesis, sensitivity analysis and

" optimization may benefit from the use of these coordinates.

* a

a.2

U 2

a ,

* *

ItI

i ~UB  ,""

Figure 1. RSCR mechanism. Figure 2. Space robot with 6 dof.

Figures I and 2 show an RSCR mechanism and a space robot modeled with natural
coordinates. It can be seen how points and unit vectors are shared at the joints. For a full
description of this coordinates and the corresponding constraint equations see Garcia de
Jal6n and Bayo (1993).

1.2. GENERAL WAYS TO FORMULATE THE CONSTRAINT EQUATIONS

The fundamental topics of the formulation of the kinematic constraint equations will be
Saddressed next. In the case of 3-D multibody systems, the constraint equations with

natural coordinates originate in two ways:

2. from the rigid b6dy condition of the elements, and,
2. from some of the kinematic joints that exist among them.

I -As an example, the constraint equations corresponding to the RSCR mechanism in
figure 1 will be formulated next.

a) Rigid body conditions for body 2:

,(XI - XA + (Y1 YAP + (Z- - ZA?2 d1A
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(XI - XA) UAX + (Y1 YA) UA + (Z - ZA) uAz - dIA COS a =0 (2)
b) Rigid body conditions for body 3:

(x -x2 F + (Y1 - Y2F + (zi - z2} -d12 = 0 (3)

(xi -x2) ul. + (yi -y2) uly + (zi -z2) ul -d12 COS =0 (4)
* v-+ U,.y+uX r-I (5)

c) Joint constraints for the cylindrical pair ((r3 - r2) x U1 = 0, only two independent):
(Y3 - Y2) Ulz - (Z3 - Z2) Uly = 0 (7)

(Z3- Z2) U1.- (X3- X2) UI. = 0 (8)
,)Rii -X2) Uly -(Y3 -Y2) Ul = 0 (9)
d) Rigid body conditions for body 4:

(x3 - XB2 + (y3- yBO + (z3- ZB)2- d=2B  0 (10)
(X3- XB) Ulx + (Y3 -YB) Uly + (z3 - B) ulz-- d3B COSY=0 (1)

(x3-x) UB + (y3 -yB) Uy + (z3- zB) uBz- d3B cos = 0 (12)
t isvryeUs x UBx + Uly UBy +Uz UBz- COS (P = 0 (13)
It is very easy to add relative coordinates, with the corresponding constraint equations.

For instance, to add the distance (s) in the cylindrical pair it suffices to add the equation,

N -X2? + (Y3 -Y2? + (Z3-Z2? -S2 = 0 (14)
Notice that the revolute and spherical joints do not introduce any constraint equations.

It can be realized that all the equations (1)-<14) are quadratic. So, they will lead to linear
Jacobians, very easy and cheap to evaluate.

If q is the vector of dependent coordinates, the equations (1)-(14) can be represented
in the following compact form

0(q, t)= 0 (15)
where time t can appear in the constraint equations through an externally driven coordi-
nate, for instance, distance (s). A system of nonlinear equations similar to equations (1)-
(14) can be developed for the robot in figure 2 or for any other system.

At this point it is convenient to divide the methods to solve the kinematic and/orp dynamic equations in two groups: global and topological methods. In the global methods
all the equations are set and then solved simultaneously, with no consideration of any
particular characteristic of the system; they rely on efficient sparse matrix solvers. On the
other hand, the topological methods try to take advantage of the system topology. For
instance, the two systems in figures l and 2 are different: the RSCR is an closed loop
chain and the manipulator is an open chain. The topological methods rely on the use of
relative coordinates and on forward and backward recursive formulas.

2. Kinematic Analysis of Multi-Rigid-Body Systems

In this Section we will describe the kinematic analysis of rigid multibody systems. We
will consider only the finite displacement problem. Both the global and topological
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methods will be consider, and a short subsection will be dedicated to the concept of
space of allowable motions.

* 4
2.1. GLOBAL CONSTRAINT EQUATIONS

We start from a known position q in which all the constraint eqs. (15) are satisfied; then
a finite increment is given to the input variables or degrees of freedom. In order to find
the new position, it is necessary to solve the system of nonlinear constraint equations.
This is carried out by the Newton-Raphson (N-R) method.

2.1.1. Newton-Raphson and Modified Newton-Raphson Iteration. The system of non-
* ilinear eqs. (15) can be solved by the well known Newton-Raphson iteration formula

S04%q) (qil - qi) - (qi) (16)

This system of linear equations is sparse and can be solved with an appropriate routine
found in a sparse linear algebra library. The standard N-R method requires a new factor-
izadon of the Jacobian for each iteration. The modified N-R iteration performs several
forward and backward substitutions for each Jacobian factorization, allowing important
efficiency improvements in many cases. However, if the increments in the input vai-
ables are large, the standard N-R shall be used because it is more robust and reliable.

Sometimes, it is possible to decrease the number of iterations of the N-R method by
£. , improving the position vector with whic the iteration is started. This can be carried out

by adding to the previous position a coiTection based on a velocity analysis computed
with the last Jacobian available in factorized form. The cost of this improvement is a

[forward and a backward substitution.

1 +2.1.2. Redundant Constraints. Practical difficulties in the solution of eqs. (15) and (16)
can arise if there are redundant constraints, i.e. additional but compatible constraint equa-

.1 tons that lead to a Jacobian matrix with more rows than columns.
There are two principal ways from which redundant constraint equations arise:

a) Due to convenience of implementation. For instance, if in the RSCR example in fig-
ure I all the eqs. (1)-(14) are kept. a redundant equation arise because only two of
eqs. (7)-(9) corresponding to the cross product of vectors are independent.

4 b) In overconstrained multibody systems that are exceptions to the GrUbler criterion, as
for instance in spherical mechanisms and in many very important practical systems.
Redundant constraint equations can be detected and eliminated by a preprocessing of

, the constraint eqs. (15). The main disadvantage of this method is the need to repeat the
dependent equation elimination process each time the multibody system changes itsI Iconfiguration, or -in some cases- after large changes in the position of the system. Thus
this procedure is not suitable for real-time or interactive simulations, because there is no
time to repeat the dependent equations elimination process. The second possibility is to

I !solve systems (15) or (16) directly, with a procedure capable of directly tackling redun-
dant constraints on a strictly standard form.

Let us assume that system (15), corresponding to a system with n coordinates andf
degrees of-freedom, has m nonlinear equations, of which only (n-f)<m are independent.
As a consequence, one may be tempted to think that the redundant equations in (15) just

* .4
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produce an excess of compatible equations in the linear system (16). If this were true no
particular difficulties would appear during the solution, because there are a lot of ways
and numerical routines to solve linear systems of equationis with an excess of compatible
equations. However, the problem is a little more complicated, because the redundant but

) . compatible nonlinear equations (15) can induce an excess of non-compatible linear
equations in (16) in the intermediate iterations. This does not happen, for instance, in
velocity or acceleration analysis, because in these cases the Jacobian matrix is evaluated
in the exact position, in which all constraint eqs. (15) are satisfied.

Sometimes this problem can be solved using Gaussian elimination with column pivot-
ing and row scaling, because then, as long as qi is approaching the true solution at which

* hc constraint equations are fulfilled, the algorithm tends to disregard automatically the
dependent equations. Howe,':., this procedure is not sufficiently robust and reliable.

A reliable algorithm to soive the redundant system of linear eqs. (16) is the least-
square formulation. The normal equations corresponding to.system (16) are,

T O[i (qil -qj=-[3ji Il(qi) (17)
This algorithm converges on a very reliable way to the exact solution of all constraint

equations. It can be argued that the solution of system (17) is less efficient than the solu-
tion of equation (16), mainly because of the product of matrices in the LHS. However,

practical experience has shown that even for non redundant systems, eq. (17) can be
more efficient than its counterpart (16). The reason is that in large MBS, the Jacobianj tends to be very sparse, and then the product of matrices can be carried out very effi-
ciently. System (17), although often less sparse than (16), has the advantage of being

4. tsymmetric, with the possibility of saving storage and using simpler pivoting strategies.
Table 1 shows the results in CPU msec for the finite displacement problem of the spa-

tial 6R robot shown in figure 2. The kinematic simulation consists of imposing an end-
effector translation on an elliptic path contained in a plane perpendicular to the robot ini-
tial position plane. Three different conditions have been considered: standard N-R, modi-
fied N-R, and modified N-R with an improved initial approximation obtained from a
velocity analysis. It can be concluded that in this case the improvements that result from
using modified N-R and the velocity approximation are considerable.

Standard N-R Modified N-R Mod. N.R with eel. impr.

531 217 155

I Table 1. CPU relative times for a finite displacement analysis.

2.1.3: Improved Sparse Matrix Techniques. The best way to improve the efficiency of

global methods is to develop faster sparse matrix solvers, better suited for the size, spar-
sity pattern and characteristics of systems (15), (16) and (17). The best way to do that is
to introduce the topology of the 3ystem into the sparse solver (see r fi et al. (1986)).
Finally what one finds is a convergence of algorithms and procedure ith the topologi-
cal methods that will be considered later.
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2.2. VELOCITY TRANSFORMATIONS: SPACE OF ALLOWABLE MOTIONS

Before entering the study of the dynamic problems, we will study in this Section the
possible or allowable motions that the multibody system may have in accordance with
the constraint equations. The study of these motions and the methods of expressing themI " is a kinematic problem, that has important implications in the formulation of the differ-

ential equations of motion.
The actual velocity vector q of a constrained MBS, is a vector that belongs to a par-

ticular vector space that can be called the space of allowable motions (the tem motions
should actually be velocities). The study of this vector space and the ability to find a ba-
sis for it constitute very important points, for both kinematics and dynamics formula-
tions. Many authors have been -explicitly or implicitly- referring to it (see Karnman and
Huston (1984); Kim and Vanderploeg (1986b), Many et al. (1985), Kane and Levinson
(1985), Huston (1990), etc). The concept of the space of allowable motions allows for a
simple and general way to explain, on a unified background, many different ideas and
formulations that have been introduced in the last years.

~For rhonomous systems the analytical expression for the constraint equations is given

by eq. (15). Differentiating this equation with respect to time once and twice, we obtain

;lqlq, t)€l 4 -, vb (18)

0q(q. gaqg-qq c (19)

where the dot indicates total derivative and the sub index t partial derivative with respect
to time. Eqs. (18) and (19) define vectors b and c, which will be used in Section 3.

If all the degrees of freedom are co:tcrolled kinematically, that is, if the motion of all
the input elements is known as function of time, eqs. (18) and (19) constitute two
systems of m equations with m unknowns controlled by rank m matrices. From here on,
however, it will be assumed that there are n dependent coordinates and (n-m) free or
kinematicaly undetermined degrees of freedom.

We will introduce now a large family of methods, in which the independent velocities
z can be defined as the projection of the dependent velocities q on the rows of a constant
(not time or position dependent) matrix B

z=B q (20)

Eq. (19) can be augmented by eq. (20) to yield

j~Wq] ~ b 1(21)
Let us assur. at this point that matrix B alSO fulfills the condition of havingf=n-m

rows that are independent from one another, and also independent of the m rows of Oq.
With these assumptions, the matrix in eq. (21) can be inverted, and finding the vector q
involves the solution of the following equation

-b)=Sb+R i (22)
IB]Z

where S is a matrix constituted by the m first columns of the inverse matrix in eq. (22),
and R is the matrix constituted by the f=n-m last columns of the said inverse matrix. It is :-
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easy to show that the columns of R pertain to and generate the nulispace of matrix 0oq.
Regarding the linear system (18), which is undetermined as long as a value is not given
to the input velocities, eq. (22) indicates that the general solution of the system is ob-
mined as the sum of a particular solution of the complete equation (term Sb), plus the
genoral solution of the homogeneous equation (term Ri).

The result of equation (22) may be compared with the terminology commonly used in
Kane's method (Kane and Levinson (1985)). The columns of matrix R are the partial
velocities with respect to the generalized coordinates z, and the term Sb constitutes the
partial velocities with respect to time.

The acceleration equation can be obtained in a similar manner, augmenting eq. (19)
with the derivative with respect to time of eq. (20),

fOq b ~C 1(3
and the inversion of this matrix gives

q _ cl=Sc+R i(24)
LB

This expression, analogously to eq. (22), indicates that matrix R can be calculated by
triangularizing the leading matrix of systems (21) or (23), and performingf forward and
backward substitutions, with thef last columns of unit matrix I as the RHS terms.

Some of the dynamic formulations that will be seen in Section 3. require the calcula-
tion of the term (Sc) in eq. (24). From this expression, it is concluded that this term is the

t dependent acceleration vector 4 when -is zero. Since the leading matrix of system (23)
has been previously triangularized (when finding matrix R), the calculation of the term
being considered requires very little additional effort.

Many methods currently used to determine a basis of the subspace of allowable mo-
tions, that is to say matrix R, can be considered inside a large group -the projection
methods- which will be described next.

It is clear that eqs. (20)-(24) completely define the transformation between dependent
and independent variables. This only leaves matrix B to be determined. Once this matrix
is calculated, it can remain constant during a large range of motion of the system. The
condition that matrix B must comply with is that its (n-m) rows must be independent
from one another, and independent from the m rows of matrix 0q. At this point, we can

*identify and describe in this context, three methods that have been proposed in the litera-
• ture to construct the matrix B.

1. Method based on the Singular Value decomposition. The SV decomposes a (mxn)
rectangular matrix, such as0 0, in the form

*q TD V (25)

where matrix U is orthogonal of size (mxm). Matrix D is compose,. of a diagonal ma- 2

mx of size (m.m) that contains the singular values, and a zero matrix given byf=n-m
last columns. Matrix V is orthogonal of size (nxn), and can be decomposed into two .
sub-matrices Vd and Vi of sizes (mxn) and (fin), respectively, according to the
partition in D The most important property of the SV decomposition that pertains to
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the problem at hand is that the rows of the matrix Vi constitute an orthogonal basis rif
the nullspace of matrix 0.In other words, it is verified that

4D aT (26)
In view of this expression, Singh and Likins (1985) proposed to construct matrix R
directly from the SV decomposition. The problem is that the SVD is essentially an it-
erative process. which consumes a great deal of time, and it is absolutely impractical
to carry out it at each position q of th - system. Mani et al. (1985) have proposed us-
ing the SV decomposition to cp~toikate the matrix B, whereby this operation only
needs to be performed once or at mfo:., a few times dtiroughout the entire range of the
motion of the system. Bear in midnd that. , matrices R, corresponding to different
positions q c. the system, can br. nalculatAr j:y n only onie matrix B, that continues to
be valid as long as its rovs are inderndent froin i'.... .1 04(q). Eq. (26) indicates
that matrix Vi complies with the cor ait~o -s rep,, 'rd for matrix B, at least a oga
no large changes ame produced in the -sr.i -:,in matrix 0 so that the linear
independence condition between tha rows o; .. c. ma rn'arrix and lose of matrix B is
lost.

2. Method based. c : he QA decomnor .1 This method is similar to the previous one,
but it uses t; r'. -nsterad of the N .. nposition, because the QR decomposition is
a dir-ct and che;pe.- ur cess (Kki .... V,.nderploeg (1986b)). The QR mnethod de-
composes &.- =,x~ x 0 in the fc.,

(27)

where Q i - a ort .,v -al (nA.I) m- , -.no k i a r., ztangular (nxm) matrix, formed
by an uppf . tr -- atri x Grx -nd: -dr -. x of order VJim). Note that a tilde

I has been x,- %1 Lo d: --. .iih 'he r'esuit c: '.. Cik decomposition from the matrix Q
that symbolizes the exten mu~ !rcr-s in dy ?ar.' analysis (S. _;tion 3), and the matrix R
(basis of the laccoian tuilispace). The apy.i.cation of this decomposition to the
problem at hand is straightforward when cona&d eiing that the f last columns of Q

* ~~~constitute an orthogonal basis of' the nuilspace oi. the matrix 0 thtcnbetkna
matrix B, in the samne way as in the SV d.omposition.q

3. Method bas.d on . txa:rriai:guiariz.-Jtn. 7xiis method, described by Serna et al.
(1982), is Vbi--. on the Gauss -,angularizazion of matrix 0qwith total ri-fting. This
implies the d.-omposition of tli: Tacobi~i in sub-matrices, in the form

<D (28)

where matrix eq is a square matrix (mxtn) tbqi.." tains the columns in which the piv-
ows ha% e appeared. Matrix 04 corm~ins the j iuisins in which the pivots have not ap-
peared, and k--s the ize .(mxf). In the theory of linear equation, the variables
associated with polumns 4bq are called independent variables, and those associated A'
with columns 41q are called dependent variables. Once Matrix 4vq is triangularized as
in eq. (28), maaix B is a boolean matrix constructed as follows

B=[Ol 0 j] (29)
where I is a (fxt) unit matrix. The matrix from whose inverse matrix R is calculated,
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Oq ]=fq 11'J (30)
Since matrix is triangularizable, it is guaranteed that the rows of matrix B are in-
dependent from those of 0 q. Note that the triangularization of (30) is simpler than
with the SV or QR decomposition, because in the part corresponding to matrix B no
additional work is necessary. Eqs. (20) and (29) indicate that the independent veloci-
ties z are chosen as a sub-set of the dependent velocities q.

2.3. TOPOLOGICAL SOLUTION METHOD

An obvious way to improve the efficiency of the finite displacement method previously: explained is to take into account the topology of the system to be analyzed. It is known '
that open chain MBS driven by relative coordinates allow a simple and efficient recur-
sive solution. Closed chains can also benefit from this open chain formulation, with some
modifications. This is considered with more detail by Jimdnez et al. (1993). Here we will
give a very short, qualitative description of the topological methods.

2.3.1. Open Chain Systems. We will be consider an open chain system such as the one
shown in figure 3. For such a system, the relative or joint coordinates also constitute a
possible set of independent coordinates. If this is the case, the finite displacement prob-
lem can be solved directly, avoiding the solution of any system of linear or nonlinear
equations.

In a system with a tree configuration, if a relative coordinate is incremented this mo-
tion affects only to the bodies that are upwards in the corrersponding branch of the tree.
It is very easy to compute the new Cartesian position of these bodies. If many relative
coordinates are incremented it suffices to go over the tree rec'trsively affecting to each
body of the finite displacements of the joints that are backwards in the tree.
It is also interesting to consider that in an open chain system it is very easy to compute

the matrix R that relates Cartesian with relative velocities. Instead of solving a system of
linear equations as in (22), all columns of R can be computed by introducing a unit rela-
tive velocity in the corresponding joint (zero velocity in the other joint coordinates) and
computing the Cartesian velocities in the upward bodies in the tree. This is a very simple
and cheap recursive procedure.

! .

Figure 3. Open chain mulibody system. Figure 4. Closed chain mulibody system.
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The Newton-Raphson izeration equations can be set in the partitioned form

q Aqb,

whose solution can be computed as

Aqa = 0 ._ - .bAqb)
(32)+ --®q +q

It can be seen, in figure 6 and in eq. (32), that the larger system of linear equations to
be solved is based on a lower triangular matrix 4q'; this matrix corresponds to the open
chain system. The closure condition of the loop introduces a small system of three equa-

I dons. It can be useful to remember that the Jacobian of an open chain system can always

be arranged in a triangular form, that of course do not need to be factorized. It is also
worth to remember that forward and backward substitutions with an sparse triangular
matrix are computationally equivalent to forward and backward recursive processes.

3. Dynamic Analysis of Multi-Rigid-Body Systems

3.1. GLOBAL FORMULATIONS

1* I This Section deals with the direct dynamic problem. The position of the multibody sys-
ter is characterized by its dependent coordinates. However, at the time of formulating
the equations of motion, it is possible to do it with dependent or independent coordinates.
There is not a consensus among the experts as to which method is the best for all cases.

We discuss in this Section several methods of formulating and solving the direct dy-
namic problem with both dependent (Section 3.1.1) and independent coordinates• (Section 3.1.2).

3.1.1. Formulations in Dependent Coordinates. The formulation the equations of
motion with dependent coordinates can be obtained by either the Lagrange's equations or

the method of virtual power. Hereinafter, the vector q will represent a set of n unknown
dependent coordinates, m will be the total number of independent constraint equations
(geometric and kinematic) and thereforef=n-m will be the number of dynamic degrees
of freedom. The constraint conditions are written in the following general form

0(q, t )=0 (33)

By using the Lagrange equations or the virtual power principle, it is possible to arrive
to the following system of dynamic equilibrium equations

Mq+0% Q (34)
where vector Q contains the external and the velocity dependent inertia terms. The term
"'(q ,) corresponds to the constraint forces, that is, the forces necessary to enforce the

constraint equations.

,f a
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3.1.1.1. Method of the Lagrange's Mu!tipliers. Eq. (34) has n equations and (n+m) un-
knowns: the n elements of vector q and the m elements of vector ;. In order to have a
sufficient number of equations, it is necessary to supply m more equations. The obvious
choice is to use the algebraic constraint equations (33) which along with (34) constitute a
set of differential algebraic equations or DAEs of index three. In order to avoid DAEs
one can use the acceleration kinematic equations, which are obtained by differentiating
the constraint eqs. (33) twice with respect to time

0q qNtq C (35)

this expression defines vector c. By writing expressions (34) and (35) jointly, one obtains

M r
~" 1(1-(36)j C

which is a system of (n+m) equations with (n+m) unknowns, whose matrix is symmetric,
non positive definite, and sparse.

The main advantage of the dynamic formulation in dependent coordinates using
Lagrange's multipliers, besides of the conceptual simplicity or[ the method, is that of
permitting the calculation of forces associated with the constraints -which depend on the
Lagrange's multipliers- with a minimum additional effort.

3.1.1.2. Method Based on the Projection Matrix R. A second possibility of formulating
the motion differential equations with dependent coordinates is based on the matrix R,
introduced in Section 2.2. Remember that thef=n-rn columns of R represent a basis of
the nullspace of Oq; that is, a basis of the subspace of possible motions. If th- dynamic
equilibrium eq. (34) is pre-multiplied by RT and one takes into account that matrices Oq.' and R are orthogonal "

RTM4=RTQ (37)

Eq. (37) contains (n-m) equations with n unknowns. In order to have as many equa-
tions as unknowns. it is necessary to complete this system with the kinematic accelera-
tion eqs. (35), resulting in

c (38)

SRT M Q "

~which is a system of n equations with n unknowns, that can be solved for the dependent
accelerations c. Note that the upper part of eq. (38), corresponding to matrix 0 q. has

been previously factorized in order to calculate the matrix R. Because of this, the system
of eqs. (38) can be solved with very little ,ditional effort, and this method is sometimes
more efficient than the one based on eqs. (36) (Unda et al. (1987)). The dynamic formu-
lation whose end result is eq. (38), was introduced by Kamman and Huston (1984), al- t
though they did not use a general matrix R, but a set of eigenvectors associated with thef ,: -" ,zero eigenvalues of the matrix (0T0a).

Matrix R can be calculated by means of any of the methods referenced in Section 2.2,
although in general the simplest is the projection method, based on the selection of the
independent coordinates as a sub-set of the dependent ones. ,
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Eq. (36) allows us to clearly distinguish the equations corresponding to the kinematics
-the m first ones-, from the equations corresponding to the dynamics -the (n-m) last
ones-. Besides, system (38) does not explicitly contain any independent coordinates,
rather they are implicitly considered via the matrix R. Each matrix R implies a choice of
independent coordinates.

It is known that the time integration of the dependent accelerations that come from
eqs. (36) or (37) leads to severe unstability problems. In order to avoid that it is neces-
sary to integrate a mixed system of DAEs or to use special stabilization techniques as the
one due to Baumgarte (1972).

3.1.1.3. Penalty Formulations. In this Section we will present an alternative formulation
in dependent coordinates based on the penalty method, proposed by Bayo et al. (1988),
This formulation eliminates the Lagrange's multipliers from the equations of motion, and
leads to a set of n ordinary d 7- ,." ', s with q as the only unknowns. In
essence, this method directly : qvurates tht violation of constraints, penalized by a
large factor, into the equatior of rno,:ons. Ti.. larger the penalty factor the better the
constraints will be achieve. '.t cost of introducing some numerical ill-conditioning.
Theoretical studies of its con' .ge ice and stability have been carried out by Kurdila and
Narcowich (1992). In this paper cne penalty method will be introduced in a very simple
way.

According to eq. (33) it can be considered that vectors 0, 0 and0 represent the vio-
lations for the position, velocity and acceleration constraint equations. On the other hand,Ii eq. (34) shows that the columns of 4q represent the direction of the constraint forces. Soit is possible to formulate the penalty method from eq. (34) by introducing very big
restoring forces, proportional to the constraint violation, on the direction of the constraint
forces. Eq. (34) is transformed in

M4 + ¢+ 20$t 0+ )_Q (39)
where matrices cc, 12 and g are (mxm) diagonal matrices that contain the values of the
penalty numbers, the natural frequencies and the damping ratios, of the I degree-of-free-dom penalty system assigned to each constraint condition. If the same values are used foreach constraint these matrices become identity matrices multiplied by the respective

penalty numbers.
Note that the term (aO + 2uflh. 0+ ctu 0) is an approximation to the true

Lgrange's multipliers X. The premultiplication by 0( projects the forces unto the space
of the dependent coordinates. Substituting 4 in eq. (39) the following result is obtained,

LaT T
(M + 0; (X 0q) 4 = Q- Oq a (q + Ot + 2 g 0 + &0) (40)

laree condition of convergence for the penalty method is achieved by merely using
large penalty factors. These in turn may produce numerical ill conditioning, which never-
theless may be avoided by the improved technique described below. It is well known that

f I penalty methods bring forth the problem of choosing the right penalty number. It is very
important that the analyst be supplied with a method that converges, regardless of the
size of the penalty values, to the right solution within specified tolerances in the con- K
straints. To this end, Bayo et al. (1988) extends the augmented Lagrangian method

11, commonly used in optimization analysis to improve the numerical conditioning of the 1.
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proposed penalty equations. Consider again the classical Lagrange's multipliers method
as stated by eq. (34). Instead of following the standard approach, eq. (34) can be modi-
tied by adding the corresponding penalty terms, whose values will be zero if the con-
straints are satisfied. Therefore

M qi+ ilTt( l+ 2Qgbi i+ &O2 li)+O;X .*= (41)

This equation can also be viewed as a penalty method to which the Lagrange's multi-
pliers are added. In the limit, the constraint conditions are satisfied, thus X-.r and eqs.
(34) and (41) become equivalent, except for round off errors. In eq. (41) the Lagrange's
multipliers X* play the role of correcting terms. By merely comparing eqs. (34) and (41)
it can be inferred that

+ (42)

The solution of (41) without the kinematic constraint eqs. (33) requires that the correct
values of r be known. Those values are not known in advance but it is possible to set up
an iterative process that calculates them The iteration expression is easily established by
taking advantage of eq. (42)

i=0,1,2,.... (43)

with 4-0 for the first iteration. Eq. (43) physically represents the introduction at itera-
tion (i+l) of forces that tend to compensate the fact that the constraints are not exactly
zero. It becomes now obvious how the penalty number does not need to be very large
since the resulting error in the constraint equations will be eliminated by the Lagrange's
terms during the iteration procedure.

The matrix formulation of (41), including the iterative process defined in (43), is given
by the following expression

" jj,0qa- 0 q+-,+2nI++-)) 1 =0,1,2,.... +),=( + qa -q 4i+q,!

with M 4j0 = Q for the itmitiai iteration. The subscript i represents the iteration number.
The extra numerical effort to perform the iterations is not significant, since an iterative
procedure is usually necessary to solve a system of nonlinear differential equations.

The penalty formulation has the advantage of having to solve a set of n equations, as
compared to (n+m) needed by the Lagrange's multiplier method. In addition, constraint
stabilization is implicitly considered within the algorithm, redundant constraint equations
are considered automatically, the systems of linear equations has a positive-definite
matrixand it is simpler to implement than the methods that use independent coordinates
which are shown in the sequel. It has been shown (Bayo and Avello (1993)) that this
formulation is also very robust with respect to singular positions.

3.1.2. Formulations in Independent Coordinates. Two important advantages of this
type of coordinates are the reduction in the numbtr.of. equations to be integrated, and the A i
disappearance of the instability problem in the integration of the constraint equations
using ODE solvers. However, this has a price in terms of computational effort (the posi- .- .
tion and velocity problems need be solved after the function evaluations) and difficulty

4,,

- .+-: . - - -<,.....+

s-'- __ -:+' _

S301, . -

(-'+:, ~~' V_;- rA + ,." _<



+,,

*in the implementation of some of the numerical integration methods, in particular the
more stable implicit ones.

One point of great importance in these methods is the choice for the right set of inde-
pendent coordinates; it is closely related to the methods to compute matrix R explained
in Section 2.2 and will not be considered here. All that is important to point out is that,
usually, no system of independent coordinates is adequate for the entire range of motion
of the system. As a consequence, it is necessary to establish a double actuation proce-

*dure: on one hand a method must be developed that permits checking when a set of inde-
pendent coordinates is becoming inadequate, and on the other hand, it is necessary to
establish a method which will permit finding the most adequate new set of independent
coordinates. Fortunately, there are mathematical properties of the Jacobian matrix 0 q,
that permit the solution of both problems satisfactorily.

One last important point should be remembered here: very often the numerical inte-
gration subroutines of ordinary differential equation are based on multistep methods;
these methods are very efficient, but they require special techniques for starting the inte-
gradon process. Due to the fact that each time it is necessary to change the independent
coordinates, the numerical integration must be restarted again, it is recommended to
carry out the minimum possible number of coordinate changes. On the other hand, when
some determined coordinates start to be inadequate, the integration process becomes
much slower. To summarize, it is necessary to arrive at a compromise solution, by mak-
i.-g the minimum number of coordinate changes that guarantee quick and accurate nu-
merical integration.

The numerical integration process with independent coordinates requires solving the
S, position problem and performing the velocity analysis at each iteration. The latter does

enot constitute an important difficulty, however, the position Problem does, because it re-
quires an iterative solution that consumes an important amount of computational time.
For this reason some authors as Paul (1975) have suggested the integration of the follow-
ing extended set of variables

t{ IT), n.i.s. Y , .({T, qT}, (45)

where z are the independent accelerations. Because all the velocities have been inte-
grated (and not only the independent ones), the new position of the multibody system is
directly obtained as result of the numerical integration. In this numerical integration pro-
cess. t::a constraint equation stabilization problem is not so critical as in Section 3.1.1.,
becau:e the dependent variables that are integrated are the velocities, and not the accel-
erations. A lot of numerical experiments have shown that the numerical integration of
(45),'compleiented with checking of constraint violations and the solution of the posi-
tion problem when this violation is too large, provides an excellent compromise of speed
and precsion.

It is possible to compute dependent accelerations q by any of the methods explained in
Section 3.1.1 and afterwards to integrate numerically only an appropriate subset of inde-
pendent accelerations i. This procedure has been called coordinate partitioning method
(Wehageand Haug (1982)). We will describe here other family of methods based on the
projection matrix R. In Section 2.2, the following transformation between dependent and'
independent'accelerations has been inroduced

4=R i+ (S c) (46)
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By introducing this equation in expression (37), it is obtained

RT M R = RT Q- RT M (S c) (47)
which constitutes the equations of motion in terms of independent coordinates. Eq. (48)
represents a general matrix transformation from the vector spaces of dependent accelera-
tions and forces to the vector space of independent accelerations and forces.

This formulation is valid for both scleronomous and rheonomous constraint equations.
In addition, this layout is valid, irrespective of the method chosen to compute matrix R.
Vector z doesn't need to be a subset of vector q, but instead it can be a fully different set
of variables.

3.1.3. Comparative Remarks. The penalty formulation defined by eqs. (41) and (44)
has the advantage, over the formulations in independent coordinates, that the appearance ,
or disappearance of constraints can be accommodated automatically without changing
the coordinates, which in turn avoids the restarting procedure of the numerical integrator.
The penalty formulation is also more suitable when the multibody system goes through a
singular or bifurcation position, because in these cases the Jacobian changes its rank. As
a consequence, and unless special provisions are made, the formulation in independent
coordinates (and even the Lagrange's equations in dependent coordinates) tend to either
crash the simulation g introduce sudden large errors, whereas with the penalty formula-
tion the term (M + 04qoz 0 q) in eq. (44) is free of singularities and makes it be very sta-
ble under these circumstances (for more details see Bayo and Avello (1993))

The penalty formulation (44) will tend to be more efficient numerically than the for-
mulations in independent coordinates, simply because in eq. (44) the major computa-1 tional burden is the fojmation, triangularization and one forward reduction and back-
substitutioLof (M + 0 q aL Oq). Since the mass matrix does not modify the sparsity of the
product (Oq Oq), this operation is less costly thpthe formation, triangularization and f
forward reductions and backsubstitutions of (04 Oq), required for the formation of the
matrix R with the least squares formulation. Note, that these algorithms also include the
formation and triangularization of (RTMR) which represents an additio-ial computational
burden of these methods.

3.2. TOPOLOGICAL FORMULATIONS

The general purpose dynamic formulations described in Section 3.1 are simple, but they
A iare not suitable for very fast dynamic simulation, that requires formulations that take into

account the system's topology.

3.2.1. Recursive Formulations. Historically, most of the improvements in multibody
dynamic formulations come from the robotics field. Walker and Orin (1982) shown that
the solution of the inverse dynamics by recursive Newton-Euler method allows a very
efficient formulation of the equations of motion. The composite inertia method seems to
be the most efficient dynamic formulation for serial robots with N<10, which includes . .
most practical cases. It is a 0(N 3) method.

Other authors (Featherstone (1987)) have developed fully recursive 0(N) algorithms
for open-chain systems. Although they are not the most efficient in practice, the elegance
and attractiveness of tap Featherstone's formulation has exerted a strong influence on
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later developments that have generalized these ideas for non-serial (tree-configuration)
systems and closed-loop systems (Bae'and Haug (1987-88)). More recently, some inter-
est has been placed in looking for improved efficiency using 0(N 3) variants of this
method (Bac et al. (1988); Bae and Won (1990)).

Summarizing, the method of Featherstone proceeds with a triple recursion in the fol-
lowing way: 1) Knowing the relative position and velocity at the joints, the Cartesian po-
sition and velocity of all the links are computed recursively forward, from i=l to i=N. 2)
Equivalent or articulated inertias and forces are computed recursively backwards, from

; i=N to i=l. 3) Finally, the relative accelerations are computed recursively forward again,
from i= I to i=N.

These ideas have been extended to MBS with many branches on a tree-configuration,and afterwards to systems with closed loops. The consideration of branches in the kine-

matic chain is a simple task, and more difficulties are found for closed loop MBS.. These
can be transformed into open chain systems by cutting a joint in each closed loop. (see
Bae and Haug. (1987-88)). In a later work Bae et al. (1988) introduced a modification
addressed to compute all the relative accelerations at once by solving a system of linear
equations, thus becoming an O(N3) method.

3.2.2. Velocity Transformations. More recently, Garcia de Jal6n et al. (1989), Bae and
Won (1990) and Bayo et al. (1991) have presented formulations well suited for real time
analysis, that are based on velocity transformations, similar to the ones presented by

4 :Jerkovsky (1978) and Kim and Vanderploeg (1986a). We will study in this Section a
general and simple method to formulate the dynamic equations of any open or closed
chain MBS, and which can be parallelized even to the body (or element) level.

The dynamic formulation in independent coordinates described in Sections 3.1.2,
based on the projection matrix R, is simple and general. It treat all systems in the same
way, regardiess of their topology and particular characteristics. A way to improve the ef-
ficiency of this formulation is to take advantage of the open chain configurations that the
multibody systems may have or in which they may be transformed.

Let us consider an open chain multibody system that consists in one or several
branches, which form a tree structure, as shown in figure 3. In open chain systems rela-
tive coordinates are also independent coordinates. It has been pointed out in Section
2.3. 1. that for open chains matrix R can be computed directly, without forming and tii-
angularizing the Jacobian matrix. In addition to this, the sparsity pattern of R becomes
apparent and can be used in subsequent matrix operations. It is easy to see that the part of
the matrix R that affects a particular link or element can be formed independently of the
rest of the elements. This property leads to an body-by-body treatment of the equations
of motion. 4'

Finally, it is worth mentioning once again that, as the columns of matrix R thus calcu-
lated constitutes a basis for the nullspace of the Jacobian matrix, it can be written

4 qR= 0 (48) ,

although the constraint equations are never explicitly calculated. Once the matrix R is
j known, we can use the method for the formulation of the equations of motion in inde-tL

pendent coordinates explained in Section 3.1.2. In particular, we can use eq. (47). The
matrix R may be obtained in an body-by-body basis, considering separately the rows A,
that correspond to the dependent velocities of a particular body; this opens very good
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; opportunities to carry out the computations in parallel.n The atrix product (RTMR) and: other terms that appear in 6q. (47) can be computed onhi bIy-ybybss
tas s iu oo op system can be transformed to an open

chain by simply eliminating certain constint equaons that enforceloops. It is possible to divide the consa-dnt equation into two groups: the first, denotedby the superscript I, is formed by the constraints of the open chain system tha' resultfrom the opening of the loops; the second, denoted by the superscript 2, will be formedby those constraints needed to close the loops previously opened. Consequently the
> Lagrange dynamic equations become

; 0 0 J,2 Ic (49)

The key point in this formulation is the fact that the matrix RI, chat defines a basis forthe nulispace of 0 ;, can be directly obtained by the procedure explained previously.
This obviously leads to large savings in computational costs, and even though the matrix
o is never formed explicitly, the following relationships will still be satisfied

0 RI =0 (50)
S=RIV 

(51)

R iRt + Sc (52)where the vector zz is formed by the relative joint coordinates of the open chain system.Now, in the closed-loop system these coordinates z' are not independent, because theyare interrelated through the constraints 02. The problem is that the constraints 02 are notwritten in terms of z1 but in terms of q. However, this problem may be easily solved asfollows. Substituting eq. (52) into eq. (49), premultiplying the first row by (R.), andtaking into account that the coefficient of X, vanishes, we obtain
RIT MRI RIT c2T I,, ,IRTQ RTMSlcl I

I 0R' 0 21 C2 0SIC, Ir It is worth mentioning that the new projected mass matrix is much smaller than theoriginal in eq. (49). A very important fact is again that the matrix transformation impliedin eq. (53) may be performned in an body-by-body basis, and thus can be Parallelized inan optimal manner. The equations of motion (54) may be solved by either one of thefollowing methods, seen in Section 3. 1: Lagrange's multipliers, penalty formulation and

i transformation to true independent coordinates. For the details see Jimdnez et a. (1993).

4. Dynamics of Flexible Body Systems t t i hcaSo far, we have presented several approaches to the solution of the kinematics and dy-namics of multi-rigid-body systems. There are some important cases, however, in which
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deformation plays an important role, as it happens, for instance, in light-weight spatial
structures and manipulators or in high-speed machinery. The dynamics of those systems
is influenced by the deformation and thus the formulations of the preceding Sections
cannot be applied. The complexity of the equations of motion considering deformation
grows considerably, and so does its size, since the variables defining the deformation
must also be considered.

Due to strong space limitations, it is not possible to do here an overview on the meth-
ods presented in the literature for the analysis of flexible multibody systems. Instead, we
will concentrate on the developments carried out by the authors in the last few years. In
Section 4.1 we will describe a general method based on the moving frame approach with
natural coordinates, that can be used when the elastic displacements are small and linear
mode superposition can be applied. In Section 4.2 we will present a formulation for
beam-like elements based on the large-displacement theory, that uses the same kind of
Cartesian variables -points and unit vectors- described previously. Both methods can be
used together, including also rigid bodies modeled as explained before. The use a com-
mon set of Cartesian coordinates is on the basis of such general approach.

4.1. THE CLASSICAL MOVING FRAME APPROACH

In this method two kinds of variables are considered. First, the rigid body variables, that
express the large nonlinear overall motion of the moving frame attached to each body;
second, the deformation variables, that express the state of deformation of each body
with respect to its moving frame. The relative elastic displacements are assumed to be
small, so that the linear theory of elasticity holds. It is possible to take as deformation, variables the nodal displacements resulting from a finite element discretization of the
flexible body, but this may lead to a large number of unknowns. One way of reducing the

size of the problem consists in assuming that during the motion only a few deformation
modes will be excited and in taking the amplitude of such modes as unknowns. This is
the popular substructuring technique called component mode synthesis, described by
Hurty (1965) and used for MBS by Shabana and Wehage (1983). For a general descrip-
tion of this technique see Shabana (1989). A major advantage of the moving frame ap-
proach is that it makes use of the classical linear finite element theory to introduce either
the nodal variables or the assumed mode shapes. Some of the limitations of this method
have been pointed out by Kane et al. (1987), who showed that the moving frame ap-
proach with linear elasticity fails to consider the rotational stiffening and other second
order effects that appear at very fast speeds of operation.

Next we will describe the moving frame method using the natural coordinates. A
slightly different approach can be found in Vukasovic et al. (1990).

4.1.1. Kinematics of a Deformable Body. Consider the flexible body shown in figure 7.
The moving frame is rigidly attached to it at point 0. The position vector of a generic
point P can be expressed as

r = ro+AF = r+A (Fn + ) (54) : °

where the local position vector F is expressed as its value in the undeformed configura-
tion fn plus the elastic displacement in the moving frame U. Matrix A is the rotation ma-
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t-ix. This elastic displacement can be expressed as a linear combination of static and dy-
namic modes, in the form

N. Nd

where 0i and , are the static and dynamic modes, and fr and the corresponding

modal amplitudes (in number N, and Nd, respectively). In this formulation the distinction
between static and dynamic modes is very important because, as it will be seen in the se-
quel, they are managed in a completely different way.

ii " R V

Figure 7. Deformable body with fixed and moving Figure 8. Flexible beam element in the
frames. undeformed configuration.

In this formulation for flexible MBS, points and unit vectors are defined on the joints
and joint's axes exactly on the same way explained previously for rigid bodies, so as to
be able to define the joints and joint's constraints in the same way (this is considered as
essential so as to be able to mix rigid and flexible bodies in the analysis of a single
MBS). The static modes are the deformation modes that result of introducing relative
displacements between the points and vectors that belong to a deformable body. On the
other hand, the dynamic modes describe internal deformation, i.e., deformation states that
keep constant the relative position of points and unit vectors. We will present this
formulation using a simple example: the beam element shown in figure 8.

In the element shown in figure 8 we will consider two points ro and r l , and four unit
vectors. Some of this unit vectors shall be chosen according with the axes orientation
both joints. Point ro is the origin of the moving frame and the vectors u, v and w, that are
mutually orthogonal, define the orientation of the moving reference frame axes. The ro-
tation matrix A can be expressed as

A=(ulv Iw] (56)
'A Let us consider the static modes of the body in figure 8. The modes 0i (i = 1,2, 3) are: :. :-,::. obtained by introducing unit displacements of point rl on the directi~ns (x, z, -', mspc ,.;

. tively. These static modes are displayed in figure 9._Note that mode 01 produce a defor-
mation in the (-, y) plane; the deformation of m~de 02 is an axial deformation on the di-
rection of axis 3; and the deformation of mode 03 is contained in the plane (7, 7). Note
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also the difference between mod, 4) and 0 3 at point ri: in mode 0I the bearf is free to
rotate around ni, while in mode 4)3 rotation is forbidden because vector nj shall maintain
its direction.

W nn

V I V r

" iFigure 9. Static modes due to displacements of a ponL
~In figure 10 the twutatic modes that result from variation of the ( , -) components of! n1 are.jhown. Mode 04 is a torsion mode due to a variation in the component of nii;

, mode 05 is a bending mode in the plane (3y, z) due to a variation in the component of", : -* ni.Note that in this case a bending of the beam at point r1 with respect to vector n1 is not .
I. related with a variation in the natural coordinates, so it is considered as an internal de-[ • formation that shall be determined by the dynamic modes (see figure I11).

I Figure 10. Static modes due to variations in a unit vector.

, • The main point with respect to static modes is that their amplitudes TI (i = 1I ... ,5) can;. ' be computed from the relative variation of natural coordinates (Cartesian coordinates ofj- points and unit vectors), so they do not need to be considered as mechanism coordinates.
,, . We will see how this can be done for thejflexible element we are considering.,~Taking into account that static modes0q~ (i = 1, 2, 3) have been computed by introduc-! I ing unit displacements for point ri, the real amplitudes of these static modes can be eas-! ily computed in the moving frame from the expression,

0 r

a t( 11ier irn (57)In order t compute these amplitudes as a function of the natural coordinates we canduse the following coordinate transform , ation7 d t a

i Taking into account that r0 r, wObstute.s) into eq. (57) we obtain (58- . pression of static modal amplitudes in terms of the natural coordinates, so it i dn.

formtio tha shl edtriedb hyao de (se fiue1)
a Ii

308

-45 -:7



11r A' (r, - ro): !In (59)

where f~ is a constant vector and matrix A is determined from eq. (56). In an analogous
i way it is possible to compute the modal amplitudes corresponding to the static modes

that oiiaefrom teunit variation of the components of vector ul. It is obtained

rl.,= A nj -i5,~ (60)

where only two of the three components make sense in this particular case. It has been
shown that static modes do not introduce additional global coordinates in the analysis.

f-"l

ri Utfl r 17

Figure 11. Some dynamic modes of the beam element.

I I

S ndin

Y
z r

A y

£ Figure 12. Differenutial mass element in a flexible body. 4

On the other hand, dynamic modes have been defined as internal deformation modes,i.e., modes that do not produce variation on the natural coordinates of the beam. Figure

I I shows three dynamic modes that have been computed as the e igenvectors (natural
modes) of the beam with the boundaries clamped so as to do not allow variationjit the
Cartesian coordinates of the points and unit vectors. It can be seen that mode !Ej is a 0
bending mode in plane (x-, -y) with free rotation around unit vector~ui; mode I'F2 is a
bending mode in the plane (y, z) with both ends clamped and mode TI3 is a second mode

, ZR,

i- n the mer lan , witytename boudshay condinNed at tereeal d fin nmber,
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of static modes, but an infinity of dynamic modes, although only a few of them need to
be included in the analysis (those that one expects that will be excited during the dy-
namic analysis). In some cases only some static modes -perhaps not all of them- will be
enough to get the desired precision.

Of course, the amplitudes of dynamic modes kj (i = i, 2, .. are independent of the
Cartesian natural coordinates, and shall be included among the unknowns to be inte-

* grated during the dynamic simulation.
The extension of the concepts and ideas presented in this Section to more complex

fiexible bodies is straightforward. Static and dynamic modes can be computed with a fi-
nite element code by imposing the appropriate boundary conditions.

4.1.2. Dynamic Equations and Constraint Equations. Once the deformation modes
have been defined, it is possible to formulate the motion differential equations. In this
case we will use the virtual power principle. Consider the flexible body shown in figure
12. The virtual power of inertia forces of this body can be computed as

r ...T.. r e . p dV (61)

Taking time derivatives of eq. (54) it is obtained

toi0 + AF+ A? (62)

i = to +A? +2Af+A' (63)
-i and substituting in eq. (61),

wuuif + TAT+ 'TA F+ I+ 2A + AF) p dV (64)

where 'r and ' can be obtained by differentiating eqs. (54) and (55), in which only 11, and
4 are functions of time. Although it is not possible to fully expand here this equation, it is
interesting to consider one term and to remenber where are the problem variables
(natural coordinates and c:ynamic modal coefficients); let us consider for instance the
term, !

ro A r p dV (65)

In this integra term ro is a natural dependent velocity. Other dependent velocites ap-.
pears in matrix A, that according to eq. (56) is the matrix [u 1 l I *]. From eq. (62), r "contains the natural coordinates (u, v, w), the natural velocities (t 0 1 u I * 1*) and the
modal velocities Ti and 4. However, according to eqs. (59) and (60), the static modal
velocities "i can be expressed in terms of the natural velocities (to i" I 14 1 i I *). The
algebraic manipulations are straightforward, but too long to be reproduced here. The
volume inte'ratioajn eqs. (6A) and (65) applies to the undeformed local coordinate F,, to
the modal 0 e - s Or,) and ' fV{n), and to the material density p.

Finall-,, w. -ive to an expression in the form ;

-- T

F. W=4 M+Qv,) (66).

i ~~ NZ. ++,..

A'a o+ . .++



where 'e is the vector that contains the dependent virtual velocities of the flexible body;
Me is the inertia matrix of the element.and Qvethe vector containing velocity dependent
inertia forces.

Dynamic equations for the whole set of bodies can be obtained in an analogous way.
Internal reaction forces do not produce virtual power. It is necessary to introduce the
constraint equations that relate the natural coordinates. This can be carried out in the
same way that for rigid bodies.

4.2. LARGE DEFORMATIONS

As mentioned previously, the classical moving frame approach is based on the assump-
tion of small displacements. It assumes that the equilibrium condition is set in the unde-
formed configuration. Because of this, the method seen in the previous Section cannot
handle larger deformations than those for which the linear finite element method and
mode superposition yields accurate results.

When the second order effects become important and/or displacements become finite,
the global or absolute method described in this section can be applied. We call it global
or absolute because the entire motion of the body (finite rotation plus deformation) is all
referred to a fixed frame. This produces a shifting of nonlinearity from the inertia terms
in the moving frame approach, to the deformation terms in this approach. A formulation
of this type was first presented by Simo and Vu-Quoc (1986 and 1988), for multibodies
modeled as planar and three dimensional beams, respectively. See also Cardona (1989).

In this Section we will assume that the flexible bodies are long and slender and that
they can be correctly modeled as oecams. Timoshenko's beam theory will be used. With
this basic assunnion we will derive expressions for a simple nonlinear beam element
that can be used to model flexible bodies in a multibody formalism. Perhaps the most at-
tractive features of this formulation an its simplicity and the compatibility with the natu-
ral coordinates so far described in this paper, since the nodal variables of this beam ele-
ment are also Cartesian coordinates of points and unit vectors.

r
2

Figure 13. Deformed and undeformned prismatic 3-D beam.
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14.2.1. Kinematics of a Deformable Beam. Figure 13 shows an initially straight prismatic
beam of length L and constant cross section A. We introduce a fixed reference frame
(XI, X, X3), with the Xlaxis coincident with the centroidal line, and axes X2 and X3 co-
incident with the principal axes of inertia of the section. A cross section of the beam in
this initial state can be described by the point (XI, 0, 0) and by two mutually orthogonal
vectors M and N, parallel to the X2 and X3 axes. We may think of M and N as co-
rotational vectors that move rigidly attached to the cross section to which they belong.

After the beam has undergone finite displacements, we can. define the position of its
cross sections with position vector r and with the co-rotational vectors m and n. We will
use upper case letters for the undeformed positions (material coordinates) and lower-
case letters for deformed positions (spatial coordinates). The deformed positions can be
expressed as a function of the undeformed ones. Since the undeformed beam is charac-
terized by just the Xcoordinate we can consider vectors r, m and n, as a function of X,
and the time t, and the deformed coordinates x=(xi, x2, x3) of a particle whose material
coordinates are X=(XI, X2 , X3 ) can be written as

x(X, ) = r(XI, ) + X2 m(X1 , 0 + X3 n(X1 , t) (67)

where X1 is not a function of time.
Nowfinite element interpolation will be applied. Classic Timoshenko beam elements

interpolate independently the displacements and rotations. The nodal variables are the
three displacements ui and three small rotations O. In a ,imilar way, we will assume an
independent interpolation for the nodal variables, that will be different, in nature and
number, from the classical ones. For this element the nodal variables are composed of the

, ,three coordinates of vector ri and the six components of the orthogonal unit vectors mi
and ni, as we show in figure 14.

X,(

Figure 14. Caresian dependent coordinates for a beam section.

The nine nodal variables (ri , mi, ni) are redundant or dependent, because there are
I three constraint equations that m i and ni must satisfy (unit norm and orthogonality condi-

tions). Redundant variables have been extensively used in the analysis of multibody
- systems, but seldom in the finite element method. The use of redundant variables can re-

duce the complexity of the formulation. The cost that one has to pay is the introduction
of constraint equations to enforce the satisfaction of the constraints at the nodes. For the
sake of simplicity, only two-node elements will be considered here. T'

A
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Let (ri, mi, ni), i = 1, 2 oe the values of (r, m, n) in the nodes that belong to the beam
element (e). The values of (r, m, n) inside each finite element are obtained through the
following interpolation scheme

2 2 2
re=X Njr i, me= Nim i, ne Nj Nn i  (68)

where Ni are the standard finite element shape functions. Note that in eq. (68) also the
~unit vectors are interpolated. Since the shape functions are not required to preserve the

norm, vectors me and ne have no longer unit module and they are not orthogonal. This is
a new source of discretization errors that is added to the standard error of the finite
element method. A full discussion on how this error affects the accuracy of the solution
goes beyond the scope of this paper, but it can be pointed out that the convergence of the
finite element method is guaranteed, because this error decreases with element size, and
in addition to this the numerical results obtained with this formulation are similar to the
ones obtained with other nonlinear formulations (Avello et al. (1991)).

In order to obtain the inertia forces we first develop the expression for the kinetic en-
ergy, which can be obtained from the integral

7 = OT te dm (69)
fve

The velocity of a material point Ye is obtained by differentiating expression (67) and
Sby substituting the interpolation scheme given in (68), leading to

2
( X 3 i (70)

Substituting eq. (70) into (69) yields

TV ~Ni Nj (t, iti + X2 iiiTrh' + X2iT ~ +
Vizl j=I

(71)
+ 2 X2 'T ri + 2 X3 t' fnj + X2 X3 miT i#) drm7

where the only terms that depend on the integral variables are X2 and X3. Since X2 and
X3 are principal axes of inertia, and X, coincides with the center of gravity of the cross
section, the three last terms in the integral vanish After reordering eq. (71), the kinetic
energy is obtained as

I e = q T Me qe (72)
2

where qeT rT mIT n IT rOTM2T n2T) is the vector that contains the nodal variables of
j 'element (e), and matrix Me is a constant and symmetric matrix composed of sparse

submatrices Mij of size (9x9). In an homogeneous beam, Me takes the form
e fM M2 [Aci 1 I3  03 03 1

M = "' ;with Mij =p 03 12 cij 13 03 (73)
1 21 22 1 03 03 13 cij 13
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4 where p is the volumetric density, 13 the (3x3) unit matrix and cij the integral over thelength of the element of the product of shape functions (Ni Nj).
This sirple and constant expression for the mass matrix can be compared with the

highly nonlinear matrix obtained in Section 4.1.1. However, the elastic potential energy
is more complicated than with the moving frame method.

One of the basic assumptions often made in structural analysis is that displacements
* and displacement gradients are small. When this assumption holds, the Cauchy strain

tensor can be used and gives accurate results. However it is known that the Cauchy strain
tensor does not work for large displacements since it does not exhibit the proper invari-
ance under rigid body rotations of the displacement field. The Green strain tensor has
typically been used in nonlinear elasticity to characterize the deformation field of bodies
undergoing large displacements. As the displacements and displacement gradients get
smaller, the Green tensor tends to coincide with the Cauchy tensor.

Let us consider a continuous body and a fixed reference frame. We will use capital
letters X=(X 1, X2, X3) to refer to the coordinates of a particle in the undeformed position
and lower-case letters x=(xx, x2, x3) for the deformed position. In the Lagrangian for-
mulation x is taken as a function of X and time, in the form

x = x(X, t)) (74)

, The deformation gradient F is defined as the matrix that contains the partial deriva-
tives of x with respect to X. An infinitesimal vector in the deformed position dx can be
expressed in terms of the deformation gradient and of its undeformed position dX as

dx=-dX=FdX (75)

The Green deformation tensor C is defined as the tensor that relates the square length
(ds)2 of vector dx with vector dX. Thus

ds 2 = dXT C dX (76)

The Green strain tensor E gives, by definition, the change in squared length between
the deformed and the undeformed state of a vector dX

ds2 - dS2 = 2 dXT E dX (77)

where (dS)2 is the original length of vector dX. From eqs. (75)-(77), it can be found

C=FT F; E=C (78)

The potential energy for a linearly elastic homogeneous material can be written in
terms of the strain vector E = (Ell E22 E33 E12 E 3E23 )T as

VT= EDEdV (79)

where the integral is extended to the body in the undeformed configuration, and where D

is a diagonal matrix defined in terms of Lame's constants X and G. "1
From eq. (67) the deformation gradient F can be computed as

axF = -=[ x, x.2 x3 ] =[+r X2m,1 +X3 n.1 Imin] (80)
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where the vertical bars in equation indicate the separation between columns. We use the
notation (-),i to represent a(-)/X. The Green strain tensor can be obtained by substitut-
ing eq. (80) into eqs. (78), as

xT xT T
I.1A .1- .1 m .1 n

E=i x m 0 0 ;with x1 =r1 +X 2 m 1 +X 3 n1  (81)
]x n 0 0

Substituting eq. (81) into (80) and neglecting second order terms, after some algebraic
manipulations the following expression for the strain vector E is obtained,

Ell r. r.1 - 1+ 2X 2r. m +2X 3 r n.1); E2= 3 3 =0
:2 (82)

1 (. m+X3n m. E13 = -rT n + X2  .1 n, E23 =0
r 2 . 2'

which is in accordance with the strain distribution predicted by the strength of materials
for a prismatic beam under axial, shearing, bending and torsion loads. For instance, the
term (r'j r.1 - 1)/2 in Ell represents a constant strain distribution corresponding to a pure
axial load. Analogously, the term (X2 r6 m.1) in Elt represents a strain distribution that
varies linearly with X2 , with a zero value at the centroid and extreme values at the edges,
as corresponds to a pure bending load.

Using eq. (82) the potential energy of a single element can be written as

2 ~ 2n -- +f [EAEEI EI +GAA G 2] l (83)

where rl represents the axial strain, £2 and 173 are the bending unit rotations per unit
length, 174 and 175 are the shearing strains, and 16 is the torsion rotation per unit length.
Their expressions are
trT r., - I
= 2 =; 2=r T n,1; 13=r m.; r4 = rTl m; 175 n; 16=n.m (84)

2
where As2, As3 are the equivalent shear areas, and 12, 13 and Ip have the meaning

I2
=  XdA I3 = X dA Ip + X)dA (85)

We can introduce the finite element interpolation given in eq. (68) into eqs. (83) and
(84). After some algebraic manipulations and rearrangements, the following expressions
for the strains ri are obtained

ri 2qT Giqe -i, i = 1, ... ,6 (86)

with 13t = 1 and Pi = 0, i = 2 ..... 6, and where qe was defined previously. The matrices Gi
* are symmetric, sparse, and depend only on the shape functions and their derivatives with

respect to X1. Their expression can be found in Avello et al. (1991).The total potential
energy for the beam is obtained by adding the potential energy of all the elements.

It can be pointed out that in this beam element the potential energy is obtained as a
polynomial of order 4th in the position variables (1I0 depends on the square of ri, and ri
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depends on the square of qe), unlike the moving frame formulation of Section 4.1., in
which the potential energy is a quadratic function of the position variables. Certainly,
this complicates the implementation of the elastic forces, but recall that the mass matrix
is constant and that it can be computed only once.
4.2.2. Constraint Equations. Since the position variables are not independent, it is
necessary to introduce constraints at the finite element nodes and at the joints. The con-

straints at the nodes account for the unit norm and orthogonality conditions for the unit
vectors. The constraints at the joints restrict the relative motion of adjacent bodies to the
rotations or translations allowed by the kinematic joints.

The joint constraint equations at the joints can be written in terms of the nodal vari-
ables of the nodes next to the joint. This problem is fully analogous to the joint constraint
equations for rigid bodies and will not be further developed here. Of course, the joint can ,1
link two flexible beams, but it can also link a beam and a rigid body or a beam and a

i flexible body computed with assumed deformation modes. The joint constraints would
be developed in the same way, but different position variables shall be used for each
kind of bodies.

4.2.3. Dynamic Equations. The equations of motion can be derived using any of the
, methods discussed previously. Here, we will use the Lagrange's multipliers method. The

Lagrangian L can be written as

L=T-l'I+T (87)
where 0 contains the constraints that arise from the unit norm and orthogonality condi-
tion for the nodal variables at the nodes, and the kinematic constraints imposed at the
joints. The application of the Lagrange's equations leads to

TM + q =Q- F (88)
where M is the mass matrix obtained by assembling the mass matrices Me of each ele-
ment, 0 q is the Jacobian of the constraint equations, Q is the vector of generalized exter-
nal forces, and F the vector of elastic forces, that are obtained by differentiating eq. (83)
with respect to qe.

t I

S. Optimum Kinematic Synthesis of Linkages

The method presented in this Section is a contribution coming from Alvarez and Jiminez
(1992). It is a good example of how natural coordinates can also be used to develop
computer programs for the design of multibody systems.

Kinematic synthesis of mechanisms is mainly a geometric problem, about which much
has been written in the past century and in the first half of the present one (Erdman and
Sandor (1978) and Suh and Radcliffe (1978)). During this time, many methods were de-
veloped (the majority of them were focused on the planar four bar mechanism), almost
all of them graphic and containing a notable amount of ingeniousness and originality.
The problems of dimensional synthesis are grouped together in three families: function
generation synthesis, path generation synthesis and rigid body guidance synthesis.
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to be too specific, and at times difficult to use. In recent years, more general programs
* for optimal synthesis have been developed, and are applicable to many different types of

planar and three-dimensional multibody systems, and include many different design
conditions or specifications. Normally, these methods are based on numerical methods
for optimization that seek the optimal solution with a minimum degree of error.

In this Section, we will describe a simple and general numerical method for the opti-
mal kinematic synthesis of linkages. This method will be described with a path genera-
tion problem for a four-bar example, but it may be easily generalized for nearly any pla-
nar or three dimensional linkage and synthesis condition.

In order to carry out the optimum design of a multibody system for a defined set of
design specifications, three steps shall be considered:

a) Choose the multibody system topology
b) Select the design variablesc) Define and minimize the objective function

We will consider two kinds of constraint equations: geometric constraints and func-
tional constraints. The geometric constraints come from the multibody system topology
-step (a)-, and are the constraints that we have considered in the previous Sections of
this paper. The functional constraints come from the specific design requirements that
the multibody systems must fulfill.

Let us consider the path generated by point 3 belonging to the coupler of the four bar
mechanism in figure 15. In this case we will consider that points A and B can not be
moved, thus the design variables are the elements of the following vector

bT={dlA, d12' d2B, 73, Y3) (89)
and the vector of dependent coordinates is %

qT = (Xl, Y1, X2, Y2, X3, Y3} (90)

In this example, the geometric constraints are the constraints that correspond to the
four bar mechanism with three points in the coupler, that are

, (x-XA)2 +(y,-yA) -d =0 (91)
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= 2 -(xl - x2)
2 + (y - y2) - d12 =0 (92)

03=(X2-XB) + (Y2 -YB) 2 d 0 (93)

X3--X +( 'i3- Y3 =0 (94)
04d 12  di12

_______ (x2 -x1 ) (5
5 *--Y3-Yl + 3E3 + dx2  Y3 =0 (95)d12. d12

In addition to the geometric constraints, the designer also specifies the functional con-
straints. For this example we will impose the conditions of the trajectory of point 3
passing as close as possible to a finite set of design points (PI, P2 , P3, .... PN), as shown
in figure 16.

It is clear that each design point corresponds to a different value of the dependent
coordinates vector q. We will call these values (qt , q2, ..., qN). Now the functional
constraints are imposed for each design point. For instance, for a generic point (i)

x - xPi =0 (96)

A - Ypi 0 (97)

where i= 1, 2, .... N.
In the general case, if q and b are the vectors of dependent coordinates and design

variables, the geometric constraints equations can be expressed in vector form as

)(q, b) = 0 (98)
It may be seen that, using natural coordinates, the constraints equations are very sim-

ple and the design variables b appear explicitly in 0. The constraint eqs. (98) differ from
the ones considered in previous Sections in the fact that the parameters in b are not con-
stant as before, but true variables, because we are trying to finding their optimum values.

The whole set of constraints for the design point (i) -geometric and functional- can be
written as

S1, 2,..qi,
S(q' b) =0 i=1,2....N (99)

Let us now introduce the objective function. We would like that point 3 of our rour bar
example goes exactly through the design points Pi. If it is not possible, we would like to
get a four bar mechanism whose dimensions guarantee that the error in getting these
design points is minimum in some sense. In other words, since exact solutions for the
design problem may not exist, we will look for the optimal solution in the least square
sense. Let us define an objective function of the formN I N

'l(q 1
' q2,..., qN b)= (q b)D(q, b) (100)

or in a more compact form

.; (;', b)= b)" 10q-,b) (101)
I2
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where is the vector 4l qIT, q2T,..., qNT) and0 is a vector that contains all the ge-
ometrical and functional constraints.. The optimum design problem consists in minimiz-

ij b

Diffreniatng ithrespect to 4 and b, and equating to zero, the following system of
nonlieareqatinsisobtained

J~qb) Oq-, ) 0(103)

DiF b)1

![

J(q-, b) =(104)
, b)

We may now solve the nonlinear eqs. (103) by a quasi-Newton method. Expanding
i, b) in Taylor's series

01(q+Ajf,b+Ab)=(qb) +, T{A-l+... (105)

i and substituting in eq. (103), we obtain

J )Oqb J(-q, b) (q , b) f A 0 (106)

JAb ) (106
from which the following iterative expression can be obtained

{b lJk, b) jT(q b)lJ(-,b)k 0(-,b)k (107)

b1 1

This method is sufficiently simple and general to be applied to nearly any system
topology (planar and three dimensional, open and closed chains, with any number and
kind of joints and bodies), and can accommodate any kind of functional constraints, even
a mixed set.

We will find now the complete set of constraint equations for the four-bar mechanism,
considering five design points. Particularizing equations (91)-(95) and (96)-497) for the
generic design point Pi

(x-XA) + (yi-YA) -dA=0 (108)

(x1- x) + (yi - y)2 -d12=0 (109) t

2 2(x- XB) + (y - yB) 2 -dB = 0 (110) '

-(I + 3id2) XI + (Y3/d2) yI + (3/d12) X! - (3/d2) yA +x = 0 (111) ..,

"Y -3d 12) X-(1 + i3 d12) y +( 3/d12) x! + (X3/dl2) y! +y =0 (112) 4
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J$

x-X - 0 (113)

Y -Ypi= 0 (114)
a I

for i = 1, 2, .... 5. There are then 35 constraint equations. The number of unknowns is
also 35: five values of the 6-element dependent coordinates vector qi plus the five
elements of the design variables vector b. Then, with five design points it is possible to
get a mechanism that exactly satisfies the functional constraints. If we have more than

* five design points, we only can get an optimal solution in the least square sense.

Figure 17. Complex multibody system with flexible bodies.

6. Numerical Example

Figure 17 shows a complex system consisting of a 6R spatial manipulator with two
flexible links mounted on a clamped flexible plate. The manipulator's end-effector is
grasping a lumped mass of 100 Kg. This example combines the three formulations with
natural coordinates previously described. The plate has been modeled with 3 static and 6
dynamic modes obtained from a finite element discretization of 16 elements. Each one of
the two slender bodies have been modeled with 4 nonlinear beam elements.

This manipulator undergoes a motion given by the following law:

q(t) (P0 + A. 24 - si2On( 0:t<T (1

(p(t)=0 T t <20 sec

where T = 15 s and the angle increments for each joint are: A(pl= 1.650 rad, AcP2= 2,102ittad, Ap3= -1.200 rad, AcP4= 0.698 rad, Acp5= 0.0 rad and Acp6= 0.0 rad. hse
To evaluate the deviation of the manipulator's tip, the same motion law has been

imposed to a rigid model of the manipulator and plate. The difference between the rigid
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Figure 18. Difference between rigid and flexible tip's trajectories.
trajectory and the flexible one is illustrated in Figure 18. It can be seen that after the

input motion stops, at t= 15 s, a free oscillation of constant amplitude remains.
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FINITE ELEMENT MODELING CONCEPTS

IN MULTIBODY DYNAMICS

M. GERADIN A. CARDONA
J. DUYSENS
D.B. DOAN
LTAS- University of Licge INTEC (CONICET/UNL)
21, rue Ernest Solvay Gfiernea 5450
4000 Liege, Belgium 3000 Santa Fe, Argentina

ABSTRACT : The paper describes a finite element formulation of flexible multibody sys-
tems. The discretized equations of motion are formulated using the augmented lagrangian
approach and are solved in an implicit manner. Symbolic cor..putation is utilized to develop
the element models. Flexible members are treated in two ways: either in a fully nonlinear

manner using a geometrically exact beam model, or through the substructuring concept.
Two complex joint models are presented: a cam pair with double curvature and a flexible
slider. Dry friction effects are taken into account using a regularization procedure.

1. Introduction

The computer approach to flexible multibody systems presented in this survey paper results

from a research project started at the Aerospace Laboratory (LTAS) of the University of
Lifge since 1984 under the direction of the first author. It has significantly progressed from
1986 to 1989 thanks to the contribution of A. CARDONA who prepared and presented his
PhD thesis [1] on the subject at the University of Libge in 1989. The resulting software
(MECANO, a specific module of the general finite element software SAMCEF) has now
become an industrial product but its development still remains a subject of intense industrial
research at LTAS. The other two co-authors are members of the LTAS research team who
have later contributed to the project on specific aspects such as joint modelling [5] and
automatic software generation through symbolic computation (11].

Our objective has been to generalize the concept of finite element to articulated
systems, starting from the methodology adopted in nonlinear structural dynamics codes

based on implicit time integration.

Indeed, the evaluation of the existing mechanism analysis softwares which were avail-

able commercially when this project was started and which still are on the market today
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revealed that most of them have been designed for systems made of rigid bodies and there-
fore do not perform efficiently when flexibility effects in the members have a, be taken into
account.

The finite element approach to flexible multibody systems may be regarded as a

particular case of the carteaian cooniinate approach. An essential difference, however,
remains in the manner in which the kinematics of flexible motion is described. When
dealing with flexible bodies, it is usual to assume that global motion is decomposed into a
rigid-body motion to which is superimposed a small deformation. The main limitation of
this decomposition is that linear elasticity is necessarily assumed in the rigid body frame
and therefore important nonlinear effects such as geometric stiffening may be mijsed in the
resulting analysis.

The finite element methodology described here repremts a full departure from tradi-
tional approaches in the sense that the total motion (inciuding thus rigid body motion and
elastic deformation) is directly referred to the inertial fr.ne.

The following advantages result from this asumpt jn:

- The representation of inertia forces is greatly simplified;

- the stiffness properties of each elastic member may be described in a quite rigorous
manner, including the geometric stiffening effects.

t[ The general principles of this finite element approach are described in section 2. Start-'

ing froru an adequate parametrization of finite rotations and displacements we compute,
according to figure 1.1, appropriate measures of strain and relative motion in terms of
which the structural matrices of the elements are developed. They are built from the aug-
mented lagrangian deqcdoon of tLe constraints, assumed holonomic at this stage for sake

of simplicity.

Due to the stiff character of the motion equations obtained in differential-algebraic
j form after discretization, the method of solution adopted is of implicit type (based on

Newton-Raphson iteration) and therefore the motion equations have to be developed in
linearized form. Efficient time integration is deult with separately in a companion paper
[10].

The concept of finite element has been applied up to now to develop a quite extensive
library of rigid and flexible joint and member elements which cannot all be described in
the present contribution. Section 3 deals with flexibility effects in the members and is itself
divided into two main parts: subsection 3.1 prasents the formalism adopted to develop a 3-D
elastic beam element, whle subsectioa 3.2 deals with the specific problem of subatructuring,
the objective being to model the structural behavior of flexible components of arbitrary
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figure 1.1: Principle of the finite element approach to multibody systems.

shape starting from a component mode representation obtained standard dynamic linear
analysis. Section 4 is devoted to the finite element description of joints, and starts with
the extension to non-holonomic vonitraints of the concepts presented in section 2. The

* very simple case of a hinge joint is treated next in order te, show that automatic element

generation can be performed through symbolic computation. Finally, subsections 4.3 and
4.4 present two joints of very complex nature: a cam pair with double curvature and a

flexible slider element. In both cases, dry friction is taken into account using a regularization

procedure.

4'4Section 6 describes three applications which demonstrate the validity of the concepts

presented.

2. General Concepts

2.1. FINITE ROTATION DESCRIPTION

Numeious techniques exist to represent a finite rotation in space which have each their
respective advantages and drawbacks. The main criteria to be considered for selecting an

2327
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appropriate formalism are [2] the number of parameters involved (3 or 4), their physical

meaning, their algebraic properties, the existence of singularities and the form taken by the

associated composition law for successive rotations.

According to these criteria, the system of parameters that we have selected is the set

of 3 parameters formed by the cartesian components of the rotation vector

, = n(2.1.1)

where n represents the instantaneous rotation axis, and T is the rotation amplitude about
it.

Let us recall that the exponential form

-- 1 + I + 1!2 + = exp(P) (2.1.2)
2!

allows constructing the rotation operator R in terms of the vector (2.1.1), where %P is the

skew-symmetric matrix made of the components of %P (i',j = -Cijkqfk) • If one denotes

by § the material rotation increment, i.e. expressed in a referential frame attached to the

moving and/or deforming body, the incremental rotation is then expressed by the m.ntrix
, A

6R = R 68 (2.1.3)

II and the material rotation increments are themselves related to the finite rotation parameters

by a linear relationship of type

6e = T(qP) 6q, (2.1.4)

with the matrix T(qP) given by [2]

T( ) = l'I + (1 sinIIlI n 1 (sin Ii,'/2 ) 1  (2.1.5)

Equation (2.1.4), which forms the basis of the adopted formalism, allows computing the
angular velocities with a similar relationship. Their time derivative provides also the

expression of angular accelerations

n = T (q ) 4( .1

A = T(V) iV + 1T) .6

The elements of the cartesian rotation vector allow to represent rotations of any mag-

nitude. However, equation (2.1.5) shows that matrix T(%P) becomes singular when

119]1 --* (2k, k = 1,2,...) and therefore the parametrizatim presents differentiability

holes. This inconvenience can be overcome by restricting the rotation vector to the range

I IIll < w (2.1.7)
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Whenever the rotation violates condition (2.1.7), the rotational vector is modified according
to j3)

I I I l IIIn(2.1.8)

It is easy to verify that 'P verifies the conditions

R(T)= R{'P) and I['II : 7r (2.1.9)

2.2. THE CONCEPT OF FINITE ELEMENT IN MULTIBODY DYNAMICS M

The concept of finite element model may be adopted in a most general sense to represent any
type of functionality appearing in the description of a multibody system: rigid or elastic
member, mechanical joint, mechanism of interaction either between members or between a
member and the external world.

to In all cases, adequate kinematic description and parametrization of finite motion allows
to define appropriate measures of deformation. Iligid elements are thtn characterized by
the condition of zero deformation, while flexible elements are derived from a virtual work
expression and the assumption of a constitutive law. This very general reasoning allows to
construct a finite element library specialized to multibody analysis in terms of which most
mechanical interactions may easily be described. The element library available in MECANO
[4] includes rigid and elastic bodies, different types of rigid and deformable joints, active
elements, element describing various interaction modes such as dissipation ; it also allows
to customize the library through the concept of user element.

The global description of the finite element model of any multibody system can be
made using the following definitions and notations:

- q is a globel set of degrees of freedom (DOF) describing the absolute positions and
orientations of the representative points of the system;

- q. denotes the DOF set of a given element, and L. is a boolean operator such that the
relationship between elemental and global DOF A

qg = Leq (2.2.1)

implicitly contains the topological description of the system.

The kinematic constraints may express joint constraints, behavior restrictions or driv-
ing constraints. They are always defined at the element level and take the most general 4
(nonholonomic, rheonomic) form

F(q, i4,t) = 0 (2.2.2) "

, 
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They are introduced through the definition of a set A of lagrangian multipliers.

.ch element is also characterized by its strain and kinetic energies, so that the total
internal energy of the system and its kinetic energy are computed through summation on
individual elements

=i~ W. (q.) and X K(q, 4,,t) (2.2.3)

Likewise, the global dissipation forces result from elemental contributions to the virtual
work of friction forces

6Wij = LTdj,,.(q., ih)6q, (2.2.4)

*Finally, the external virtual work is directly written in terms of the external forces them-selves

46W2 = -g~t(q, 4, t)6q (2.2.5)

The system equations of motion are deduced from the variational equation

| 6 (X - W - AT)dt = 0 (2.2.6)

where 6W = bWit + 6W,."

In the holonomic case (the non-holonomic case will be considered in section 4.1), they
take the form of the system of differential- algebraic equations (DAE)

M + BTA - g(q, 4, t)

*(q, t) =0

where M is a symmetric, positive definite mass matrix obtained from the assembling of the
element contributions ; it is generally configuration-dependent ; the term M4 contains the
relative inertia forces ; g(q, 4j, t) is the sum of internal, external and complementary inertia
forces ; B = [#q j is the gradient matrix of the kinematic constraints.

Let us finally mention that the numerical conditioning of equation system (2.2.7) may
be significantly improved in view of its numerical solution by making use of the augmented
lagrangian method [5]. It consists of adding to the variational equation (2.2.6) a penalty 4

term in the constraints which reinforces the positive definite character of the functional.
The modified functional takes the form

6J -K W -, - p bT)dt =0 (2.2.8) 

330

-~~ -------- ----



where k is a scaling factor on the constraints and p is a penalty term. The modified
equations of motion are then

M4 + Br(kA\ + p4') =g(q, 4, t) (2.2.9)• ik*(q, t) =0

The solution of (2.2.9) obviously coincides with that of (2.2.7) since the term involving the
constraints vanishes when the latter are verified.

2.3. 1IMPLICIT METHOD OF SOLUTION

The choice of an implicit method of solution allows to imbed any kind of analysis in
the same formalism. in particular, the kinematic analysis of the system results from the
determination of a succession of configurations with zero strain energy and a quasi-static
analysis corresponds to the succession of equilibrium configurations obtained by omitting
the kinetic energy of the system.

2.3.1 Linearization of Motion Equations. The implicit solution of the dynamic case relies
upon linearization of the DAE equations (2.2.9) and proceeds as follows. Let us assume that
(q*, 4*, , A") represents an approximate solution of system (2.2.9) at time t. A corrected

t i solution is obtained in the form

(*+ Aq, 4* + A4&, 1 + A4I, *+ AX) (2.3.1)

from the solution of the incremental equations

i MA4 + C*A4 + S'Aq + kBTA r" +I O(Al)o kBAq in -ktf + O(A2) 2(2.:.2)

where r is the residual vector of dynamic equilibrium

r = g(q, 4, t) - M4 - BT(kX + pf) (2.3.3)

and where the tangent stiffness and damping matrices St and C are computed from

S[BT(k\+p)] Ct (, (2.3.4)
Oq 8q a4

2.3.2 Time ftegmtion. Time integration of the second-order DAB equations (2.3.2) is
performed using an integration scheme of Newmark type (6]. The motivations of this choice
are
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the filtering of high frequencies brought into the model by elasticity,

the low dependence of algorithm stability with time step size,

. the software simplification brought by one-step, second-order time integration,

. the use of existing software architecture for structural dynamics,

- the accumulated experience in implicit nonlinear structural dynamics with Newmark
type methods.

Newmark's integration scheme consists of a simultaneous interpolation of displacements 4
and velocities, implicit in accelerations

4.+, = 4. + (1 - 'y)h4. + +7h§h+ + e'n
I (2.3.5)

%+j = q. + h4. + (I - jP)h 2 ° + +f'4 2q+ 1 + e( 5

with the local truncation error on displacements [7]

S ,e. = j-)hPq(3)(r) +- O(h4q (4))  (2.3.6)

The constants (P, y) coefficients are integration parameters. The values

I and (2.3.7)
I

provide unconditionr stability with maximum accuracy for a linear system.

It can be shown [8,26] that the straightforward application of Newmark's method with

the parameters (2.3.7) to the DAB system (2.3.2) leads to a weak instability of the method

induced by the algebraic constraints. This instability can be controlled by adapting the

asymptotic behavior of the algorithm. A detailed discussion of the numerical aspects (i.e.

stability, accuracy time-step control) associated to time integratio of equations (2.3.2)

using Newmark type methods is made in [9-10].

2.3.3 Effective incremental procedure. Special care has to be taken in the increnentation
procedure of the rotAtional DOF since finite rotations are not additive quantities.

Let us split the set of kinematic unknowns into translation and rotation parameters

[qT \T] * [dT qT AT] (2.3.8)

Displacements and lagrangian multipliers are incremented in the usual manner
d(t) =d + Ad A(t) = A. + AA (2.3.9)
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while for rotations, we determine the incremental rotation necessary to carry from the

previous configuration to the current one

R(t) = R. R,.(t) (2.3.10)

or, in terms of rotational vectors

ezp(4') = ep(.) exp('P',ne) (2.3.11)

where sP(t) is the rotational vector describing the actual rotation R(i), 4n is the rota-

tional vector of the reference configuration R,, and %Pjn (t) is the rotational vector of the

incremental rotation R,,,(t).

This approach can be seen as an updated Lagrangian point of view for the rotation part

of the system. The reference rotation is fixed to the previous step, so that the expressions

for the variations of angular displacements, velocities and accelerations are simply obtained

in terms of the incremental rotation by replacing 1F by %Pn,+(t) into equations (2.1.6)

V 619 = T(,.°) 6*,.'P
11 = T('i. ) 4±.. (2.3.12)

!A = T(Pi..) iP,,. + t('n,) 4

By noting that T(O) = I, we get the starting values for the integration of the rotation

parameters
qi + = 0 C e = ft. n = An (2.3.13)

The same predictors and correctors may then be written on displacement and rotation

variables and on lagrangian multipliers

q+l 0 = 0"

an4 1 = .-2 ( - 7)h4.

n++ I (2.3.14)

4n+= qn+1 + gAq

; •+t .+ (2.3.15)

+1 = q+ +Aq'+'""£~~n+X I nq+1 q+
\.i+l \i I+ + AA

nI n
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where the displacement and lagrangian multiplier increments are solutions of the tangent
linear system

[St +'C t+'M ] [A}~k 0 k , (2.3 .1 ),

Corrected values for RI+1, fl +, An+, are computed from

( ln+l = I ,R(1F,.o,.+j)

n+1 = T(T'.,+j)4incn+1 (2.3.17)

A,,+1 = T(Fj,,+j)nc,,+1 + t 'Ii ,,+1%nc,.+i
Iteration is pursued until the system reaches equilibrium state, which is characterized by

the vanishing of the virtual work expressions

.5qrr =0 and 6A =0 (2.3.18)

In practice, eqns (2.3.18) are considered to be satisfied whenever the inequalities

lirl < e and 11411 < ,j (2.3.19)

are satisfied with given tolerances e and q/.

2.4. GENERATION OF FE MODELS THROUGH SYMBOLIC COMPUTATION

The computation by hand of the rather complex mathematical expressions resulting from
the present FE formulation has several drawbacks, namely

- the long and sometimes tedir.._ programming phase (checking, validation...);

- the obtention of a Fortran source code which is not necessarily optimized.

Besides, this complexity can represent a real obstacle to the development of more elaborate
elements.

An alternate approach for developing such a code consists in using computer algebra

in a first step to generate automatically and to simplify all the cumbersome mathematical

expressions that have to be evaluated [11]. The main advantages of this approach are:

- the obtention of a more reliable generated software (automatic generation of the

mathematical expressions minimizes the risk of errors);

the possibility to simplify the symbolic expressions generated through computer algebra
system and thus, to minimize the number of arithmetic operations before generating

an optimized Fortran source code;
• - the incresed facility to extend the capabilities of the software through automatic gen-

eration of new elements of which the manual development would be too combersome;

i< ~334.. .,W, 3 n'
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a better efficiency of the developer who is relieved from performing complex algebraic

developments. 4 t

A symbolic program has been developed upstream from the MECANO software (12] in
order to automatically develop the FE models. The computer algebra system under which

this symbolic macro-procedure is written is MAPLE [131: it has been selected mainly for
the power of its built-in programming tools (linear algebra packge, differentiation facility,

advanced programming language...).

This symbolic macro-procedure is divided into 3 mains parts:

- the symbolic treatment of the finite rotations;

- the symbolic computation of basic expressions such as kinetic and potential energies,

virtual work and kinematic constraints;

- the automatic derivation of the tangent FE iteration matrices (mass, stiffness, gyro-

scopic and damping matrices).

Figure 2.4.1 summarizes the succesive steps of the procedure.

2.4.1 Symbolic treatment of the finite rotations. It consists essentially in the obtention of

the symbolic forms of the rotation operator, the riatrix T(T) and the angular velocities

and accelerations in terms of the rotation parameters (2.1.1).

2.4.2 F lly automatic derivation of the tangent FE matrices. In order to describe the ca-

pabilities of that part of the symbolic program, the development of a rigid body element is

briefly decribed.

Starting from the symbolic expression of the kinetic energy, the procedure automati-

cally computes the symbolic expressions of the material inertia forces, the mass matrix, the

centrifugal stiffness matrix and the gyroscopic matrix.

'The complete tangent FE iteration matrices obtained in this way are directly written

in terms of generalized coordinates.

Figure 2.4.2 presents the symbolic expression obtained for the rotational part of the

mass matrix. Matrix M is in fact the matrix product TTJT where T is the linear operator

(2.1.5) and J is the inertia tensor of the body, assumed here diagonal for sake of simplicity:

* J -diag(Ju, 22 J33) (2.4.1)

2.4.3 Symbolic treatment of the kinematic constraints. The constraints expressing the in- -

'P - deformability of the rigid body element are treated by the Lagrange multiplier technique.
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Figure 2.4.1: Generation of a flexible multibody dynamics software
throught symbolic programming

Their contribution to the FE iteration matrix implies the evaluation of the jacobian matrix
of the constraints B and of their second derivatives (cf. 2.3.4). The latter evawu-tion can . a

be very tedious when manually completed. It is not essential for computing a transient
response but it can be shown to be essential for stability analysis.

A significant part of the symbolic procedure is devoted to the treatment of these kine-
matic constraints. Starting from their symbolic expression (written in vectorial form),
the symbolic procedure automatically computes the first derivative of the kinematic con- a t

straints, the symbolic expression of the jacobian matrix B (the result being directly written
in terms of the nodal parameters), the symbolic expression of the second derivatives and 't
their contribution (in term of the nodal parameters) to the Hessian matrix (2.3.4).

The capabilities of this part of the symbolic procedure devoted to the treatment of the
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Figure 2.4.2: Automatic derivation of the tangent FE matrices.

kinematic constraints are illustrat-d in section 4.2 where the symbolic generation of a hinge

joint element is presented.
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3. Finite Element Representation of Elastic Components

3.1. BEAM R',PRESENTATION OF ELASTIC MEMBERS

The appropriate description of flexible members requires in many cases the use of a
formalism which incorporates properly the geometric nonlinear effects such as geometric
stiffening. It is therefore essential to rely upon a true nonlinear beam theory [3,14-161.

3. 1. 1 Kinematic hypotheses. The behavior hypotheses adopted are the following:

(i) the beam is rectilinear,

(ii) the beam ross sections remain plane after deformation,

(iii) the shear deformation is allowed,

(iv) the rotational kinetic energy of cross sections is taken into account.

The kinematic assumptions (i) and (ii) can be summarized by the following equation

X = xo +Xota, a=2,3 (3.1.1)

where xo(t) represents the position of the beam neutral axis in the global reference frameI and X. (a = 1,2) are the material coordinates of a point on the cross section (figure
3.1.1). The base vectors ta are attached to the beam cross section and therefore, give the
instantaneous orientation of the material frame P. The current orientation of the base
vectors is calculated in terms of the current rotation operator R(s)

ti = RE, (j=1,2,3) (3.1.2)

Xs
3X3

-, 
-t

J Z, X 1

SFigure 3. 1. 1 :Modeling of the flexible beam.
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S .i Material Measures of Beam Deformation. The meaures of beam deformation are

obtained from the comparison of displaement gradients in reference and current configu.
, rations.

The displacement gradients in reference conguration are computed from the reference
position of a material point

= Ej + X 2  + X 3 E 3  t=E(31)

The displacement gradients in the deformed configuration are obtained through derivationof (3.1.1) d x x t t 3 1 4
dx ciidt dtid =  d, X277, + X3-- (.14

with the base vector variations along the beam axis
dt, = -d- dRRt (3.1.5)

ds =s di'
Substituting then (3.1.5) into (3.1.4) provides the relationship

dx "dxo + -- R(X 2 t2 + X3ts) (3.1.6)

which expresses the positio. gradients in spatial coordinates. The substraction of (3.1.3)
from (3.1.6) after expressing both quantities in the material frame provides the material
measure of beam deformation

E(a,X) = Rr(--- - ti) + R (X 2E2 + X 3E3) (3.1.7)d3 ds

The first term involves the material measure of centroidal line, or axial strain

r = dxo

Its components may be interpreted as follows: r, is the extensional strain, and (r2, r3)
are the shear strains along axes t2 and ts.

The second term involves the material measure of curvature

K = ~ (3.1.9)d3
K, is the torsional deformation, while K2 and K3 are the bending curvatures along axes t2

and t 3. The variations of the deformation measures (3.1.8) and (3.1.9) are given respectively
by

/r d(.6xo)80
br=R 1+ 69 and 6K = + KbG (3.1.10)

ds ds/ ds

4-
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Ln view of expressing dynamic equilibrium, they can also be put jh the inverse forms

d (exo) = ,r - dx 60 ad ±(60) = IK (3..11)

~wtbO6 = R69 is the spatial rotation increment.

3.1.3 Local Expression of Dynamic Equilibrium. The stresses acting on the beam cross
section are evaluated in terms of the Lagrange stress vectoro defined as the stress resultant
per unit of undefozmed cross section (figure 3.1.2). The latter is resolved along the base
vectors attached to the cross section

0" = alltl + 0 12t2 + ol 3t3  (3.1.12)

Internal equilibrium is then expressed in terms of the following quantities: b the external
force per unit of volume b, the specific mass pot the rotary inertia tensor of the cross setion
expressed in spatial coordinates I, the spatial angular velocities and accelerations a and w.
Expressing translational equilibrium of a beam element of length ds provides the equation
integrated over the cross section

L r%'*' + b - poi]ds = 0 (3.1.13)

Similarly, rotational equilibrium can be expressed in the form

~ X , + (x - xo) x ' ds = I& + w x Iw - j(x - xo) x bds (3.1.14)

The dynamic equilibrium equations (3.1.13) and (3.1.14) can be expressed in termn of stress
resultants obtained through integration over the cross section

dn W+ A)Cds
=, -(3.1.15)

dma dxo
d + ds x n =I + WXlW -In

where u denotes the mass per unit length. The spatial measures of beam stress resultants
and loads are defined by

n = fs adS = the contact force on the cross section 4

m = fs(x - Xo) x idS = the moment of stresses on the cross section

= fs bdS = the external force on the cross section j
= fs (x - xo) x bdS = the external moment on the cross section

11:
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One will also make use of the material counterparts of stress and load resultants

N = Rfn (3.1.16)

M = RTM (3.1.17)

M = R (3.1.18)

3.1.4 Weak Form of Dynamic Equilibrium. Let us start form the virtual work expression
obtained through integration cver the beam length of the equilibrium equations (3.1.13)
and (3.1.14)

j [(8 -x (d +  + ( 6 O( + xn- Ia-wx w+ d =0

(3.1.19)
It can be integrated by parts in the form

Jo (3.1.20)"

Let us next make use of expressions (3.1.10) for the va4riations of axial strains and curvatures:

the left-hand side may then be" expressed in terms of material strains and stresses, giving

j[NT6r+MI6Kd = [t6x + 66]
+ f+ (6eT(N+h -w xIw)d(3.1.21)

! ~Finally, equation (3.21) can be put in the form ,

6W,,= 6Wezs - 6W, .,. (3.1.22)

with
6W,, = ] + M T 6K~ds (3.1.23)

and where the rotation terms of externa and inertia forces are recated in materia coordi-
nares, giving

,as giin

6W.., Tx0 +M e 4- j0(6xo(f) + (6eT(Mi)]ds (3.1.24)
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and

0 = ] L xfJtN) + (b69T(JA + n1 x JZ) Ids (3.1,25)

with
J = RTIR (3.1.26)

3.1.5 ConstituAtive Equations. The material is assumed linear elastic, so that the internal

stress resultants are related linearly to beam strain measures

E = CE (3.1.27)

with the diagonal matrix of elastic coefficients

C = diag(EA, GA2 , GA3, GJ, E12 , E13) (3.1.28)

EA is the axial stiffness, GJ is the torsional stiffness, and (GA2 , GA3) and (El 2 , E43)

denote respectively the shear and bending stiffnesses along transverse axes.
,

3.1.6 Finite Element Discretization. The finite element discretization of the virtual work
expressions (3.1.22) is a lenghty process which we will only summarize here. A full derivation
of the beam element together with numerical comparisons can be found in [3].

The discretization of eqns (3.1.22) is based on a linear interpolation of both displace-
ments and rotation parameters

xO(s) = Ni(s)xo, %Y(s) N,(s)%P, (3.1.29)

where x0i, ski are the nodal values of position and rotation parameters, collected in vector

q. of the element DOF, Ni(s) is the linear interpolation function corresponding to node i,

and summation is extended to the two nodes of the element.

The strain variations of element e can be expressed in terms of a configuration -

dependent strain matrix B.

6E = B. 6q, (3.1.30)

the strain matrix being of the form B, = [B() ... B(,)] with

B,= [No T +,(KT + (3.1.31)
0 N'T + N,(fT + T')

where ()' denotes derivation with respect to s. The internal forces are such that

Wm= 6qrg,, (3.1.32)

'

4- 
0 .

|n ,v' , , ,.

- 'A 'A '' AAAAA~1 -AA 'AA~"A~A'''~''AAA AA,.A-'AA ,*A'AA A'



and take thus the form

git = BTEds (3.1.33)

The stiffness matrix of the beam element results from the linearization of the internal forces

accordine to eqn (2.3.4). It includes a material stiffness term and a geometric stiffness term

8q= = (SM', + SO) (3.1.34)

with

St BeCeB. da and S ; = - E d., (3.1.35)
'0'r.1Oqg

The inertia forces of the beam element likewise result from the discretization of

i6n, = 6qTgn (3.1.36)

They are expressed in the form

g,,nef = M.q + hL(q, q) (3.1.37)

'' where the first term, which represents the relative inertia forces, is expressed in terms of
the beam mass matrix

= (osm. (3.1.38)2; M K0

The contribution of nodes i and j takes the form

:M i = Ni()Nj() '4 0]d.i (3.1.39)

The second term of (3.1.37) represents the contribution of the centrifugal and complemen-

tary inertia forces. Its linearization according to (2.3.4) generates contributions to the :

tangent stiffness and damping matrices of eqn (2.3.2).

Let us finally mention that the integrals over the beam length are numerically computed

by the Gauss integration rule, with only one Gauss point in order to avoid shear locking

(17].

3.2. SUPERELEMENT REPRESENTATION OF COMPLEX MEMBERS [18]

Many cases occur where the deformation effects inside each body are small enough to
consider that its elastic behavior remains linear in a local frame. Then, it may be said

in some sense that the nonlinearities are limited to joint behavior. This fact allows the "
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development of methods for modeling complex elastic mechanism members based on the

linear expansion of the elastic displacements field in a basis of deformation modes of the
body.

* It is however important to stress out the limitations of the linearized approach. Situa-

tions may be identified where geometric stiffness effects are of paramount importance in at

least some of the members of the system, in which case the linearized approach presented
hereafter remains no longer valid and must be replaced by a fully nonlinear description of
elastic body deformation.

This section describes one implementation of the component mode method for multi-

body analysis. In it, we seek to obtain a full independence between the vibration analysis
module and the mechanism analysis one. The objective is to be able to use any existing
linear finite element code of structural vibrations analysis to build the component mode

model of the elastic member. In this way, we take advantage of the already developed ca-

pabilities of modeling complex structural members of many well established finite element
programs for vibration analysis.

In the present formulation, flexible bodies are represented by a collection of fixed.
boundary free vibration modes plus some "static correction" or "constraint" modes which

account for local effects at the boundaries. The approach of fixed-boundary mode was

I chosen because it gives a perfect compatibility between bodies, a fact considered necessary
to place appropriately the joints between them. The body is then linked to the rest

of the system by the selected joints. The degrees of freedom of the superelement are
the translations and the rotations at boundaries, plus a given number of internal mode

amplitudes.

The inertia terms are computed from a co.rotational approach in which the consistent

mass matrix provided by the linear analysis is used but the velocities interpolation is not
kinematically coherent with the displacements one. this approach proved to be the best

of all for the simplicity of formulation and easy interfacing of both modules. The sole
jinformation used from the vibration analysis module to build the superelement are the

reduced stiffness and mass matrices.

3.2.1 Kinematics hypotheses. Let x be the position of an arbitrary point P of the flexible

body; we write it in terms of variables in a local reference frame of the body:

x =xo + Ro(X + u) (3.2.1)

where xo is the position of the local reference frame, Ro is the rotation of the local frame

about the global one, X is the position of point P in the local frame and u is the elastic
displacement of P measured in the local frame (see figure 3.2.1).

* II
V,
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Figure 3.2.1: Flexible body kinematics.

* a After time-differentiating equation (3.2.1), the virtual displacement, the velocity and
the acceleration at point P result:

6x = 6xo + Ro o(X + u) + Ro6u

ko + Roflo(X + u) + Roit (3.2.2)
ai = Ro + Ro(flo + Ao)(X + u) + 2Rofloi + Roi

with no, Ao and 60o being the material angular velocities, accelerations and the variation

of angular displacements of the local frame. Rotations can also be expressed as increments

with respect to a reference value, giving

%P' = TO o6 '(3.2.3)

P, where the operation o symbolizes the composition of rotations [2], and 'P0 are the param-

eters of the current rotation of the local frame.

From equations (3.2.1,3.2.3), we can then compute the relative displacements and
slopes inside the elastic body in terms of absolute positions and rotations:

[u ~ - xo) -X)' (3.2.4)

Let us assume that the elastic displacements and slopes in the local reference frame of each

body are small compared to the unity:

I 1, 11 < 1 (3.2.5) 
a

These requirements imply a geometric linearity condition in the local frame; that is to say,
although the superelement as a whole undergoes finite .otations in the three-dimensional
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space, the displacements in a local frame remain small enough to assure the linearity of
relations between local values of forces and displacements.

Let us also assume that the dynamic loading conditions are such that the local dis-
placements and slopes can be accurately expanded in terms of a few global shape functions:

Hee,4 sth stofglba hae (3.2.6)

Herepe the disetofementslshapeofunctions and y are the generalized displacement am-

plitudes. The equations above express then a relation between local relative displacements
of the body and global absolute positions, which can be conveniently used to formulate a

discrete model of the body.
The relation between local and global variables can be employed to make a reduced

model from a discrete one. The latter model, usually having a large number of degrees
of freedom, could have been built by using, for instance, the finite element method. In

this case, equations (3.2.1,3.2.3) can be rewritten at each node of the discretization in the

following form:

[,4 [Yo+Ro(XiI+ui)] =[xo+Ro(X.+4iy)] (3.2.7)

where subindex i refers to magnitudes at node i, and index 0 denotes the same quantities

computed at th orig n of the reference frame.

If the Craig and Bampton component-mode method [ 19) is followed, the global shape
functions are of two kinds: u ai B + 4 ~ 328

, equation in which we distinguish between the boundary modes 4B -ed by the static

condensation procedure- and the internal vibration modes 4z -computed by fixing the
boundaries. This particular choice of global shape functions permits to represent both the
locadeformation efcts induced by the joints act on the bd degrees of freedom,

loclwn eforg u yom:

and the global deformation effects indced by the dynamic behavior of the body itself.

fThe boundary generalized displacements YB can be computed in terms of position and

rotation values at the boundary:

YB = •UB = [ (- XOs+ r ] (3.2.9)

Then, equations (3.2.8,3.2.9) express a kinematics relation between the local relative dis-

placements at the nodes of the discretized body, and global absolute positions and rotations. a

These global variables constitute the set of generalized displacements q of the superelement. s

jj
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&It is formed by 6 degrees of freedom expressing position and orientation of the local frame.
* 3 x (NB tras + IV rot) degrees of freedom expressing positions (at NB t8 , nodes of the

boundary) and orientations (at NBot nodes of the boundary), and a certain number of

internal modal amplitudes yj:
q T = %pT 0 XT  IIT yT] (3.2.10),

Positions and rotational vectors at the boundary connect the body to the rest of the

multibody system.

In what follows, we treat xg and qPy as vectors with 3 components, but the reader
should keep in mind that their actual dimension depends on the number of nodes (and

degrees of freedom) retained at the boundary.

3.2.2 Computation of the strain energy. The energy of deformation of the body can be
A directly obtained by making the double discretization process on the continuum expression

of the strain energy; i.e., if ir = fv ac V, the finite element method gives a first discrete
equation as follows

r = jdTKd (3.2.11)

with d the nodal displacements vector and K the stiffness matrix. The second discretization

(expansion into the modal basis d = 4 y) gives the expression:

1= yTy (3.2.12)
2

where S is the reduced stiffness matrix of the body:

O= 0 [K (3.2.13)

We note that in the latter equation we used the orthogonality relation which characterizes

the constraint modes (4jK4r - 0).

The variation of generalized displacements can be computed in terms of the variation

of the superelement degrees of freedom q as follows:

6 ['us] [I (xH-6Xo)+(XB+uB)x6eo
SOPB / 6eB - Seo (3.2.14)

By taking into account equation (3.2.4) which expresses the condition of small displac'3ments

and rotations in the local frame, the variation of displacements can be simplified to give:
I" ;.(bxB - 6N)+: I O

6y e -eo = Ybq (3.2.15)
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with the definition of the configuration dependent matrix

R : .1= - ; 0 (3.2.16)0 0 0 0 1

and the vector of generalized coordinates

6qT = [5x 6e T 6x T  6e T  6yT] (3.2.17)

where 69 0, 6aB are respectively the angular displacements variations at the reference frame

and at the boundary nodes.
The internal forces vector of the superelement is then calculated as follows:

67 = 6qT yliy- 6q T g,,t (3.2.18)

By differentiating the internal forces and by neglecting the derivatives of Y, we arrive

at the expression cf the stiffness matrix of the superelement:

g i t ] Aq _ TYY q = Aq (3.2.19)

~with

with S = y'- Y (3.2.20)

3.2.3 Co-rotational evaluation of the kinetic energy. The most convenient way to evaluate

the kinetic energy of the supereement in a co-rotational manner

W== / " *pdV= (IL,'* ) p dV (3.2.21)

{ Here, Rlo gives the rotation of the reference frame attached to the elastic body at node ..

Let us denote the co-rotational velocities by

eV(X) = Rt (3.2.22)sr otbd

and interpolate them in terms of nodal velocities in the form

v(X) = Nj(X) vi (3.2.23)

where the summation extends to all nodes of the flexible member. Note that this interpo- j
lation is not consistent with the displacement interpolation used to build the strain energy
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expression and also that, for finite element models using rotational degrees of freedom, the

same interpolation has to be made on the material angular velocities.

After perfc-ming the volume integral, the kinetic energy of the superelement can be
written:

W [V nTIf NpvvI = [VT rZTJM,2 [v, 2] [p2,]
(3.2.24)

where M,, denotes the block of the mass matrix coupling nodes i and j.

The next step is to form a reduced model by following the component modes approach.

A second stage discretization is made by assuming that the material velocities can be
expressed in terms of a few global shape functions

IV0r° 1

hl] -f= k ; [OU 1o0#, [*B,, *Bi,] *'i VB (3.2.25)p S I

where the part [vi' fl0 ] corresponds to (material) velocities at the reference frame, y"

are the time derivatives of the internal mode amplitudes, and the contribution of (material)

velocities at the boundary nodes of the superelement can be written in the form:

[VT n] = [((yT ,T) ... (V TrT)) (v , .. V,) (,+,+, ... .. )

(3.2.26)

Note that at nodes k + 1, ... k + I of the boundary, only the translation degrees of freedom

have been retained to form the superelement, while at nodes k + t + 1, ... k + I + mi ae enrtandt fr h sprlmet hlea oesk+ + ,..only the rotation terms are conserved. The sole restriction is that the three components of

translation and/or rotation (if any) should be incorporated to the model. The translation

material velocities are computed by projection over the reference frame, while material

velocities are the true material velocities at the considered node.

Even when the flexible body suffers large rotations, the material velocities pattern

does not change; then, this second stage discretization continues to be valid and we can
still apply the same modal expansion. The total contribution of the superelement to the

kinetic energy of the structure W can then be written as follows:

!;too) Nfol) TOV) o
v7 , n&-() 13 ) IW i, .B

(3.2.27)
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The constant mass matrix M in (3.2.27) results from the projection of the element mass

matrices over the modal basis

I -'= E E M,'J (3.2.28)

Inertia forces are computed by differeLtiating the kinetic energy. Its first variation is

6W = 6;r My (3.2.29)

The vector of variations of generalized velocities reads:

[ T  B Ui (3.2.30)

with the variations of material and angular velocities at nodes 0 and B computed from

6v = Rib6 - 69o x (RT1 c) and 6b = 6§ + fno x 69 (3.2.31)

By introducing the latter expressions into (3.2.29) and by integrating by parts, we get

6 = -6qT Gine,

=" -- 6qT (p V pT - + W M + U M) p T  (3.2.32)

where variations of the generalized displacements at the global frame are given by (3.2.17)
and where

L X flo X fT Yr] (3.2.33)

P=~~ 01 W=iioU 0
" W fi 0

00 n

(3,2.3)

Then, by differentiating the inertia forces with respect to the generalized 3celerations in

the global frame j we get the superelement tangent mass matrix M :

M,? = p i pT (3.2.35)

The inertia forces also depend on the velocities 4. In order to get full quadratic

convergence rate, it will be necessary in some caes to compute the gyroscopic matrix of

derivatives of the inertia forces with respect to velocities. This is a non symmetric matrix.
which proved to be of value for improving convergence in several examples.

a ' - ( -UvM- [V- W + WTiJ PT (3.2.36)

antisym. sym.
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The antisymmetric matrix V is defined by
0 0

V 0 j(3.2.37)

Where vectors g,~ ig are computed as follows:

191g 9'# g U' g'* g'11 = 4TpR (3.2.38)

'I

We note that the pseudo-damping matrix Upis formed by adding tip two terms: a
symmetric and an antisymmetric matrix which are learly identified in equation (3.2.26).
We finally remark that in this formulation, all contributions to the inertia terms (inertia
forces G , mass matrix M and pseudo-damping matrix C,.) are evaluated directy

from the reduced mass matrix M, the projection over the modal basis of the finite element
mass matrix. In this way, we can very easily interface the vibration analysis and the

Amechanism analysis modules.

4. Finite Element Representation of Kinematic Joints

4.1. GENERAL FORMULATION OF CONSTRAINTS [5]

The equations of motion of a dynamic system subjected to holonomic constraints have
already been stated in the augmented lagrangian form (2.2.9). The role of the penalty
term is essentially to add some positive curvature in the range space of [-1-q with a

significant improvement of convergence. Besides, this term assures the positive defdteness
tof the displacements-associated submatrix of the Hessian matrix, so the only safeguard to

be implemented against the appearance of null pivots during factorization is that terms

V associated to the Lagrange multipliers should be condensed after the degrees of freedom
" participating in the constraint equation.

The extension to systems with non-holonomic constraints is straightforward. The

equations of motion in augmented lagrangian form now have for expression{4 M+Qh +Q,h = g(q,q4,i
k*,(q, t) = 0 (4.1.1)

k4,,(q, 4, t) =0
where Qh and Q,,,, denote respectively the constraint forces arising from holonomr and

non-holonomic constraints
Q1 = Br(k+ P ) (4.1.2)

Q.BT (k + p4,)
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with the jacobian matrices of holononic and non-holonomic constraints

[B ] B =h (4.1.3)1h ] : L1hq 04 i~ O

It is further assumed that the non-holonowmic constraints are linear in the velocities, in
which case they simplify into the form

4,h = B,,h(q)4 + bh (4.1.4)

It is worthwtule noticing that the non holonomic constraints can also be seen as derived
from a "pseudo-dissipation function" VP

P =-4lhll2 . kA4 (4..5)

which generates the "dissipation forces":

aD = 3Th(kA + P*,) - = *, (4.1.6)
aq

The non.holonomic constraints contribute then to the linearized equations of motion in the
form { MA4 + C'Aq + S'Aq + kB A\ + kB"AA = r + 0(A2)

kB.Aq = -k*h "0(A 2 ) (4.1.7)

kBnhAil = -kf4 + 0(A2)

where r is the residual vector of dynamic equilibrium

r = g(q, 4, t) - M4 - BT(kA + p*4) - BTh(k, + ph) (4.1.8)

and where the tangent stiffness and damping matrices St and Ce are computed from

g+B± B(kA + Pfh) +Bh(i p,) Ct = -- 'g pBT r~ (4.1.9)
F,

For sake of computational simplicity, the second-order derivative terms (such as the contri-
bution of the non-holonomic constraints) may be omitted from the expression of the tangent
matrix when when computing a nonlinear response through Newton-Raphson iteration. All
terms have however to be evaluated to perform a linearized stability analysis.

4.2. SYMBOLIC GENERATION OF HINGE JOINT ELEMENT

As an example, let us consider the automatic generation of the vector and matrix quantities
involved in the formulation of a hinge joint element. Let {At'1, 14,1 3 ) and {4, 42, 43} be~two triads of orthogonal unit vectors atached to nodes A and B respectively at the initial
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configuration. We suppose that we have already computed the configuration of the system
at time t (reference configuration) and we want to compute the new situation at time
t + At (actual configuration ). Let {(IA,4 , I.} and {e, e, 4} be the triads obtained by
mapping the initial ones into the reference configuration via the rotation operators at each
node:

=4 RLA eef/5 (4.2.1)

S4,= RB rq 4, (4.2.2)

Finally, let (jA" , j',1A') and (4tee) be the triads mapped into the actual configura-
tion:

A = RA ajRA in Ai5 = RA/5, (4.2.3)

el= RB r.IRB in 4., = RB4, (4.2.4)

The rotation operators RA,RA rfI,RA i, give respectively the actual, reference and
incremental rotations at node A.

The hinge joint is modeled by introducing six constraints: three imposing the equality
of positions at the nodes, two fixing the rotations about two directions (figure 4.2.1). The
last constraint introduces explicitly the joint angle a, and allows thus to apply a driving

moment at the hinge.

sin(O - a) -0 (4.2.5)

with

sinO = p4'.4 , cos = t. (4.2.6)

Y The equality of positions is imposed by Boolean identifications of the corresponding
degrees of freedom. The last three constraints are tre. ted by the augmented Lagrangian
procedure.

Starting from the symbolic vector expression of the last three constraints, the procedure
DELTA (cf. figure 4.2.2) automatically computes the vector form of the constraint gradi-
ents. Afterwards, the procedure JOINT computes the symbolic expressions of matrix B
and of the penalty term contribution to the Hessian matrix, both matrices being expressed
in terms of the elements of matrices R and T. The knowledge of the symbolic expression of
R and T in terms of the rotation parameters (cf. section 2.4.1) permits to express matrix

L B in terms of these parameters, and through further differentiation the symbolic expression
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of the Hessian matrix term involving the second derivatives of the constraints is finally
obtained.

4.3. MITE ELEMENT DESCRIPTION OF A FLEXIBLE SLIDER [20]

Most applications in multibody dynamics literature concern relative motions between bodies
linked together through rigid joints a~s hinges, cylindrical, prismatic joints, etc. Flexibility
in joints have been sometimes considered, mostly for hinges. Flexible tracks can be seen
as a special type of joint with applications such as modeling of erectable booms in space.
dynamic simulationi of landing gears and analysis of vehicle / flexible guideway interaction
for ground transportation.

In this section we present a model of fleible straight slider joint. It can be described
as a straight Bernouli beam in a corotational frame over which slides a third node. A single
track can be modeled by a series of elements aligned one after the other. The sliding node
can pass from one joint to the next one that represents the track, thus allowing to refine
the mesh up to achieving convergence. Dynamic friction effects between the sliding node
and the track are also taken into account.

4.3.1 Kinematic Equations. Let us consider a straight flexible slider whose deformation
is parameterized in terms of the Position XA, XB of its two extreme nodes A, B and of the
orient ation of two orthogonal triads RA, P-B attached to them. The element has a third

JV

sliding node C which freely moves along a rectilinear trajectory oriented parallel to the
principal axis of the beam. The trajectory can be excentric from the beam axis. We will
consider that, in a general case, the sliding node C has a second freedom: it can also move
along a rectilinear trajectory ts contained into the normal cross section of the beam (see

~; figure 4.3.1).

iI

e4

Xt

i A

Figure 4.3.1 Geometry of the slider element.

Under these rompotheses, we can express the position of an arbitrary point on the sliding
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surface as:

X(1,= XA + R 4 (X(,7) + u(q) + R(,) (XI + ts)) (4.3.1)

where q, are the coordinates along the principal axis tI and along the secondary axis ts,

x4,RA are the position and rotation at node A, X(r7) = iqtI is the reference position of
the cross section centroid in the reference frame, u(J) is the displacement of the centroid,
R(7) is the rotation of the cross section with respect to the reference frame RA, and X1

gives the position of an arbitrary point of the secondary trajectory in the cross section. The
reference frame ti is oriented along the principal axes of the beam, but the secondary axis

ts does not necessarily coincide with the principal axis t 2.

The cross section centroid position in the reference frame is

907) = X(17) + u(17) (4.3.2)

Then, the position of node B results

XB = x+ + RAs(L) (4.3.3)

where L is the beam length.

We will assume that the beam behaves like a Bernoulli beam in the local reference

frame. Then, the position and the angular displacement of the cross section at an arbitrary
point of distance q from the origin of the reference frame is given by

S07)J N~q) S N(q)L 8(- A) (4.3.4)

where

0o 0 0 0 0 0
o (3  ) 0 o 0

N~i) i ) 0 (-~+ 0(435
0 0 0 0 0

0 0 0

is the matrix of Hermite interpolation functions, 'PA, q1B are the rotational vectors at nodes
A, B and o symbolizes the composition of rotations.

Variations of positions and angtdar displacements in the local frame
, From equation (4.3.4), we obtain

r 3() 1.. () No [ B 1 , I(4-3.6)

t -i
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where

[WO]

and where N'(7) - is the matrix of derivatives of the interpolation functions. We
remark that we take variations with respect to j7 since this parameter is not fixed but
expresses the degree of freedom of the sliding node along the principal axis of the beam.

By assuming that the displacements and rotations of the cross section in the reference
frame are small, we can express the variation of positions and rotations at node B as follows

B A [ (6x -6XA) + B6 A B 6q, (4.3.7)I LaCB J - L 69H - 68A --] q(4.7

t, with [o R,,
q7' XTe~ and B~ (4.3.8)I ,A B ,B,0)-1 0 1]

f After replacing in equation (4.3.6), we obtain the variation of positions and angular
displacements

6S(17) = N( 7)Bbq l + B 617 (4.3.9)

4.3.2 Strain Energy. The internal strain energy of the element can be written in the form

SI
2 2 B 'K(BB) [OB (4.3.10)

where K(BB) is the submatrix corresponding to node B of the standard stiffness matrix of

a Bernoulli beam element.

The internal forces vector gi, is computed by differentiating the strain energy with
respect to the nodal displacements

6U = bqg g - qTBTK(BB) SB (4.3.11)

By further differentiation, and after neglecting the derivatives of B, we obtain the
tangent stiffness matrix -4

S' =BTK(BB)B (4.3.12)
I

Neglecting the derivatives of B is entirely compatible with the assumption of small dis-
placements and rotations in the local frame. ,
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4.3.3 Constraint Equatons. Constraints are added to the system to impose node C to be
permanently in contact with the sliding surface:

V = XC - XA - RAS(77) - R (+ i( , ) (Xi + ts)=0 (4.3.13)

In order to verify the sliding condition (4.3.13), the projection of the vector v along the

principal axes of the be;ian is assumed to be zero:

, T= VrRAt, = (Rr(xc - XA) - s - (I + )(Xl + ts) t, = 0 (4.3.14)

Variations of the constraints O, are then given by

a 6, 'CRAti - 6XAAAi + ObPT4 (t X fl.A(XC -A)

- (6s() T t, + 604 (77)T ((X1 + ts) X ti)) -6f6tT(I + 4)ts (4.3.15)

After replacing the expressions for the vaxiations of position and orientation (4.3.9), the

underlined term on the right-hand-side can be written as

TI

6$(,i)Tt, + 64b(n)T(X 1 + tS) X t, = N [ . ]) (X1 + ts) x t,]

a(4.3.16)

By finally replacing the expression of N(7) into (4.3.16) and the latter one into (4.3.15),

we obtain:

,= 6 qT~' [r1 " A - A) + (h + RA + t, X R(XC - XA))

- xiRAfl - e6if2 + 6XrRAt (4.3.17)

where

, r 2 - )t i..2  1 = 2, 2 3
f t I( )2,J L+ ,. +-and f:2 Z

(4.3.18)
a lHere tit, t,2 , 43 denote the first, second and third components of vector ti. The contribu-

tions tc the internal forces vector and to the tangent stiffness matrix are then computed

according to the procedLre described in section (4.1).

4.3.4 Kinetic Energy. The procedure for computing the kinetic energy is the same as for it

the superelement (section 3.2.3). Using the co-rotational approach, the total contribution of
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the element to the kinetic energy of the structure K can be written as a double summation

over the nodes of the element : (4.
t K E ] ( ' ' ) (4.3.19)

where K ) is the contribution arising from nodes i and j

1i q m ) T*, (4.1 20)

Here, M ( j' ) is the 6 x 6 submatrix corresponding to nodes i,j of a Bernoulli beam finite

element mass matrix:
M=[M(AA) M(AB) ]

M(BA ) (43.21)

and l, is the 6-components vector of generalized velocities in the local frame to each node.

Inertia forces are computed by differentiating the kinetic energy. The first variation of
the kinetic energy is

-61
( l) = b4TM(")4 j (4.3.22)

Swhile the variation of generalized velocities at node i reads:

r3 - 6e X (R.?',) (4.3.23)
= 6e9 + flX 6 J4.

By introducing the latter expression into (4.3.22) and by integrating by parts - Hamilton's
principle - we get 0_ 1] M,,,,

(4.3.24)
where the acceleration vector is

rrJi.k + fl x (RTk,) (.M

Then, by differentiating the inertia forces with respect to the generalized accelerations,
we get the element tangent mass matrix M:

L ~ ITit, 0= ~ j)P (4.3.26)

4.3.5 Dynarnic Friction. During motion, Coulomb friction effects generates forces between
node xC and the sliding surface. These forces are directly proportional to the modulus of

the normal contact force in the joint, through the friction coefficient:

6qTFf -br A R() IIF.1 (4.3.27)
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where the regularized friction coefficient AR() is

(2 -.I <' .ARM)=  (4.3.28)

and where e,, is a small tolerance with dimension of speed. giving the velocity under which
one considers the joint to be "stuck" , and ;4 is 1.e Coulomb friction coefficient.

Differentiation of the friction force leads to the computation of the tangent damping
matrix C! and of the tangent stiffness matrix SI: ,

4 [T-J ~A4 = Cpf A4 I~IA (4.3.29)

with

' ' '~ 0 I 1 7 I E ,,0

and

The contact force is given by the Lagrange multipliers vector A (see equation (4.1.2) - 4

the scaling factor k has been neglected here for simplicity) . The normal contact force F1

is obtained by eliminating all components of the total contact force into the longitudinal

direction ti
F,= (I - tit')RrA (4.3.31)

where R = exp(O) is the rotation of the cross section at the contact point (node C) with

respect to the reference frame RA. The modulus squared of the normal force is:

IFI ,12 = A'R(I - tztT)R7.A (4.3.32)

where we have used the property

(I - ttT)k = (I- tltT) V k (4.3.33)

Differentiation of equation (4.3.32) gives

qA& + FTRA (4.3.34)
L• ;

After replacing the expression of Az1 (equation (4.3.9)) into (4.3.34), we obtain

. 1q Aq (F,, x A) N,n ,
:~~8 11F.11 F (4.3.35)

(FI~,, xA)Ti'A+FTk A
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Figure 4.4.1: Cam and follower system. Figure 4!.4.2: Normal and tangent vector
at the contact points.

4.4.1), r/being the arc-length parameter along the curve. The curve r(r7) is parameterized

using a cubic spline interpolation f21],

4.4.2 Kinematics of the cam/follower pair. Let us conider a planar cam/follower pair, as

,hown in figure 4.4.2, such that its components can be described by spline functions r(r;)

and s( ) in their respective local coordinate systems. The cam ad follower are shaped

so that only point contact can occur between them, excluding any possi'ility of surface to

surface contact.

Let A and B be two material points, one at each component, placed at the origin of the
~~~local coordinate systems {A; zi,vil anad {B; z 1, yt . Let also C' and D be two nodes located

, respectively over each external surface. The latter points are not fixed to the bodies, but
slide over their external surfaces in such a way that they coincide with the (unique) contactpoint when the cam and follower come dose together. Whenever the cams do not stay in

contact, C and D are placed so as to be considered the natural candidates to come into
contact. c

The kinematics of the cam/follower pair can be completely defined in terms of the

coordinates of nodes A, B, Ch and D, the rotation parameters at nodes A and B and the

curvilinear coordinates and o along the external surfaces t1,5J:

,qT =[xT 'PI xg x 'I' x4 rI ] (4.4.1) .,

surface conta'ct.

Le n etomtra ons n teahcmoet lcda h rgno hLoa coordinate- sysem {A - j n B i .LtaloCadDb w oe oae



* i

where 'PA, 'PB are the rotation parameters at nodes A and B, respectively, and q is the
vector of generalized degrees of freedom of the joint.

In order to completely define the cam/follower behavior, we have to specify two sets
of holonomic constraints and a contact law that can be defined through the use of a
pseudo-potential. The equations of motion are derived afterwards following the augmented
Lagrangian concept already described in section 4.1.

Since nodes C and D slide over the cams, their coordinates in the inertial frame are
related to the coordinates of nodes A and B through the expressions

'I

XC = XA + RAr(q) XD = xB + Rss( ) (4.4.2)

j where RA and B-B represent the rotation operators at nodes A and B. They are param-
eterized in terms of the rotation parameters %PA and %PB. These kinematic relationships
constitute a first set of holonomic constraints to be satisfied. The following six constraints

are used to impose them to the system:

f41 42 f31 = (eT e2 e3'][xc-XA-RAr(7)]

[04 §s 0s] = (eT e eT][XD-XB-RBS(f)] (4.4.3)

where el, e2, e3 are the three base vectors of the cartesian inertial system (see figure 4.4.2).[ In order to fix the curvilinear coordinates q and f along the cams surfaces, we have
to introduce two additional constraints. These restrictions should express the fact that C
and D are the natural candidates to come into contact. To this end, the two following
constraints are proposed:

(i) The normal to the external surface of the first cam at the contact point (node C)
should be perpendicular to the tangent to the external surface of the second cam at
the same point (node D):

§7 = C'tD = 0 (4.4.4)

where nc is a unit vector normal to the first cam at C and where tD is a unit vector
tangent to the second cam at D.

(ii) Node D should always be placed over the normal to the first cam at C:

s = tc-(XD-XC) = 0 (4.4.5)

This restriction is naturally verified whenever the two cams are touching mutually (i.e.

when nodes C and D coincide).

The satisfaction of these two constraints, (4.4.4) and 14.4.5), ensures that nodes C and

j D are coincident with the contact point when cam and.follower come close together.

363

H LU_ ___

-' i



a -. . .. i I B I I II I I . I I. II II ! . I ~ I~ I II

ft

The tangent and normal vectors to the cam external surface are computed in terms

of derivatives of the spline function describing the curve. The tangent vector tc and the

normal vector nc to the first cam at node C are

tc = RAer, nc = RA(er- x u) (4.4.6)

where RA is the rotation of the cam expressed at node A, and u is a unit vector orthogonal

to the plan of the joint (see figure 4.4.2). The tangent and normal vectors to tne follower
at D are similarly computed, giving:

tD = RBes, nD= RB(es, x u) (4.4.7)

In order to calculate the contact forces, we should know the (normal) distance qrel n

between cam and follower. This measure should be able to distinguish between states of

penetration (q,., n < 0) and of separation of the two bodies (q,.1.n > 0). Therefore it is

defined in the form:
qd n = nC . (XD - XC) (4.4.8)

We can impose afterwards the condition of non penetration through the definition of the

pseudo-elastic potential:

V = knp(qrl n)l, n with kfP(qrd n) = (449 if q <
S40 otbh-wie.

During dynamic computations, spurious oscillations can be developed associated to the

contact elastic potential. In order to damp out these oscillations, we include a small amount

of dissipation derived from the following Rayleigh dissipation function:

I c(2t if qreL t <0

Vt ft.,epn with CnAqrtn) hi (4.4.10)2 0 otherwise.

The non penetration potential and dissipation functions so introduced give ise to the

contact forces. The constants kc., and Co,,t should be chosen with caution, in order to

avoid numerical ill-posed problems. We have obtained good results using as pseudo-elastic
I, constant keont = 1000 x k, where k is the scaling factor of constraints (see section 4.4.2).

Let rc and icjD be the curvature of each cam at the contac. points C and D. Curvatures

can be very easily computed as follows:
I U X r, . - U X 3st - s "

Kc = uir, ix.= s (4.4.11)

It is easy to verify that convex surfaces yield positive values of curvature. Then, verification

of the following inequality ensures local mutual convexity of both surfaces, leading to contact

unicity in a local sense:
C+-D > 0 ." (4.4.12)
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Stringer conditions can be demanded, for instance by asking that

a 'MinnKc + Min D > 0 (4.4.13)

If the latter condition is verified, unicity of solution is assured for any ,elative position of

both cams.

4.4.3 Computatton of the element forces. In order to compute the constraint forces, we
need the derivatives of constraints with respect to the generalized displacements vector of
the joint (equation (4.1.2)).

After defining the non penetration potential V (4.4.9), we are able to compute the

elastic contact forces as those forces conjugated to the variation of distance between cam
and follower:

6V = 6qe. k, (q,.i .) q.-, = - ,- .q,,ea (4.4.14)

with the elastic contact force Yam. = kp(qret n) qrel ,

When cam and follower are in contact, a friction force can ar.se between them owing
to the eventual difference of tangential speeds. If we postulate a Coulomb mechanism of

friction, this force can be considered directly proportional to the normal contact force and
to the friction coefficient:

f52

b5qr.1 t Ff, = 6qlt /jR~qru) I~nI (4.4.15)

where bq,.i s and 4re, t are the variation of relative tangential displacement and the relative
tangential velocity between c, .,s at the contact point; AR is a regularized friction coefficient:

__ if 14r., I < E.

pR#a~qrl) = (4.4.16)

rift qre~~t if i~it E

and F. = 7tas + .Y(,, is the total contact force.

The relative speed at the point of contact can be computed in terms of velocities at

nodes A and B:

= kA + RAf)Ar(.7) - *I - RB1ZBS(f) (4.4.17)

The tangential relative speed is obtained by projecting qra over the tangential direction.

i5 Numerical Examples
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5.1. RETRACT C " OF A THREE-LONGERON TRUSS

The system to be analyzed is a three longeron truss designed for use in a structural
dynamics and control flight experiment. Each bay of the truss contains three longerons
and diagonals. Interfaced between each bay is a triangle of batten members. The triangle
of batten members may be envisioned as being in a horizontal plane, and has at each vertex
a hinge body which connects two adjacent battens. Also attached to each hinge body are
two longerons and two diagonals.

The truss is deployable, with two bays deploying at a time. During deployment, two
batten triangles are held fixed while the intermediate one rotates about the z axis. The
batten members connect rigidly to hinge bodies, while longerons and diagon-Is and hinged

*to them. To permit folding, the diagonals have mid-hinges along their length. The design
is such that both fully deployed and folded configurations are nearly stress-free, while
significant bend)ig and twisting may occur during deployment.

Figure 5.1.1 One bay model of the trus.,I
Symmetry conditions have been used in order to limit the model to one bay. The model

is made of 72 physical elements (51 beam elements, 6 rigid bodies and 15 hinge joints) a d 7
additional constraints to impose the motion, giving a total of 421 DOF. The one bay model
is shown in figure 9. Symmetry conditions with respect to the horizontal plane were imposed
at .riangl3 B. At triangle A, the equality of vertical positions at nodes Al, A2 and A3 was
imposed, while rotations were keeped free. These boundary conditions are in accordance to
those impose& at an experimental analysis of the mech.ism (221. The influence of other
boundary conditions on efforts was detemined and reported in (23]. Figure 5.1.1 displays
the reference configuration (dotted line) and the initially stressed configuration obtained
after assembling. Retraction is simulated in two phases:

a in order to unlock the mechanism, mid-diagonal hinge points are moved inwards and
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normally to lateral faces (times 0. to 2.. see figure 5.1.2).

b the vertical displacement of the upper batten is then ;ontroUed up to complete re-

traction (figures 5.1.3 to 5.1.5). Figure 5.1.6 displays a vertical projection of the final

configuration. Figure 5.1.7 provides information about the evolution of bending and

torsion moments in longerons during retraction.

The kinematic analysis was made in 80 ircrements, with an average of 6.8 iterations per
increment. The numerical model reproduces well the behavior of the experimental structure.

NA

f f

Figure 5.1.2: Configuration at t=2.s. Figure 5.1.3: Configuration at t=4.s.

Figure 5.1.4 : Configuration at t=6.s. Figure 5.1.5: Configuration at t=8.s. S
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.5.2. LARGE FLEXIBLE SATELLITE ANTENNA

This example shows an aplication of the superelement concept to a practical case. the
analysis of the deployment of a three-diminsional satellite antenna. The structure under
consideration is made of five similar panels hinged together as shown by figure 5.2.1.

a I I i I

S I I •

, .4 1-.I
I I

satellite antenna. at the hinge.

The energy for deployment is provided by nonlinear springs acting at the hinges, with
* torque/rotation angle law as displayed in figure 5.2.2. The curve exhibits hysteresis in

the vicinity of the locking angle, with an abrupt change of characteristics at this point (the
horizontal scale was modified in the figure to allow better understanding of the phenomena).
The first peak corresponds to the locking value of the torque, while the second one is

generat.:,l by the hysteresis effect occuring at the locking/unluck~ng phase.

Each panel of the real structure is a stiffened sandwich plate made of composite
material. It has thus been modeled as a sandwich flat shell with orthotropic: stiffness
properties and local reinforcements. An idea of the finite element model is given by figure
5.2.3 which shows a decomposition of the structure into four zones with different elastic

properties. A complete description of the modelis given in [24,251. Each substructure has
584 DOF initially and is reduced to the four connecting nodes (the mid-side node along
each panel edge) plus four internal vibration modes, giving a total of 28 DOF per panel.

The resulting mechanism model used to predict the dynamics during deployment has
242 DOF, with a quadratic mean bandwidth of 33. The time integration of the response
was performed on a time intcrval of 41s.

*Figure 5.2.4 shows a global view of the deployment process, while figure 5.2.5 displays
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1.

Figure 5.2.3 finite element model and elastic properties of one panel.

the evolution of rotation angle at the hinges. As shown by figure 5.2.4, the structure
is initially partially folded and complete deployment is achieved at time T = 31s. The
rotation angle at the joints, on figure 5.2.5, increases regularly up to locking and then
oscillates about this value. We observe that hinge 13 unlocks at time T = 34 due to the

violent oscillations generated by locking at the other joints, and at time , = 41. it has not
reached the full deployment state. We should point out, however, that since the stiffness
characteristics of the joints poseuss extremely abrupt variations, the numerical simulations

El evidenced a nearly chaotic behavior - a strong dependence of results on the time integration

parameters. Therefore, we are not able to assert if the unlocking at this joint is physically
consistent or if it is purely numerical, and more complete tests should be performed in. order
to fully validate these results.

I / " ' '

7 ,7- - ' , - 7'/ " _ ____

*I.......L..... . . - ,.' . . . . ,. ,

Figure 5.2.5: Evolution of the rotation angle of the hinges. I-
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The example tested is that of figure 5.3.1: a cam/follower pair with a constant angular
speed at thc input shaft is analyzed, for several functioning conditions. The geometry of

5 the cam was defined giving the eight points indicated in figure 5.3.2, and using a cubic
spline interpolation between them. The spring constant k equals 500. , the unstressed
length of the spring to is 22.5 and the mass of the follower m is 1. The angular speed at
the input shalt is fl = l.75rev/s. All computations were made using a constant time step

h = 0.005s.

Firstly, a purely kinetostatic analysis was made, for which we neglect all inertia forces.
Follower displacements are plotted versus time in figure 5.3.3. Also shown is the input
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figure 5.3.5: Contact forces between Figure 5.3.6: Contact forces between

ctm and follower for cam and follower for
the kinetostatic analysis the dynamic analysis.

(continuous line) co"t = 10000 (continuous line);

and for the dynamic analysis Ceont = 500 (dashed line);

(dashed line). ccot = 0 (points line)

It is worthwhile mentioning that in the dynamic analysis oscillations appear in the

computed contact forces. These oscillations are of a purely numeric origin and are directly

related to the values assigned to the contact stiffness keont and contact dissipation ce,,.
Computations of figure 5.3.5 where obtained using a value of ce.t = 10000 for the contact
dissipation constant. When decreasing this value, the force oscillations are magnified, as
shown in figure 5.3.6. Clearly, the value of cet greatly influences the results. It should

thus be chosen with caution by following a trial and error procedure.

The influence of friction is directly evidenced by the required computed torque to
sustain motion. Figure 5.3.7 compares the required input torque for two different conditions:
with friction -M = 0.2- (continuous line) and without friction (dashed line). We can

appreciate that the integral of the input torque over one period is null in the case of

zero friction.

When increasing the mass of the follower, we can arrive to a situation in which
continuous contact between bodies is not further assured. In figure 5.3.8 we plot the

computed displacements of the (candidate) contact points of the cam (continuous line)

and of the follower (dashed line) for this system. We see that the motion of the follower is

almost chaotic, jumping continuously over the cam. Figure 5.3.9 displays the configurations
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Figure 5.3.7: Input torque at Figure 5.3.8: Displacements of
the driving shaft. node C (cam, continuous line) and of

With friction (continuous line) and node D (follower, dashed line).

without friction (dashed line).

4 in time of the system during the first revolution of the cam, for a case in which the follower

mass is raised to m = 15.

OAMA

between times 0 and 0.665 s (first revolution).
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SUBSTRUCTURING IN FLEXIBLE MULTIBODY DYNAMICS

A. A. SHABANA
Deportment of Mechanical Engineering
Univ, ity of Illinois at Chicago
P. 0. Bo 4348
Chicago, llinois 60680

ABSTRACT. A nonlinear finite element formulation for flexible multibody dynamics ib bunimia.
rised. In this formulation, it is required that the element shape functions can describe lorge rigid
body translations. Of particular interest in the dynamics and control of flexible inultibody !ys-
tems is the concept of equivalent systems of forces. The formulitilUn of the generalized fGur es id
the nonlinear dynamic equations of substructures in flexible multibody dynanucs ib discubbtd and
the validity of using the linear theory of elastodynamics in mechanical system applications such ab
tracked vehicles is reexamined.

1. Introduction

The fact that most of the element shape functions can be used to describe large transla-
tional displacements is crucial in the development of the nonlinear dynamic formulation of
substructures in multibody dynamics. By using this fact and a set of coordinate systems
that define the configuration of the finite element, the nonlinear generalized Newton-Euler
equations of the substructures that undergo large rigid body displacements can be developed
using the principle of virtual work in dynamics or Lagrange's equation. These equations can
be expressed in terms of a unique set of invariants of motion that depend on the assumed
displacement field and can be evaluated in advance in a preprocessor computer program.

In developing the equations of motion of the substructures in multibody dynamics,
special attention must be paid to the definition of forces and moments. The concept of the
equivalence of two systems of forces in rigid body dynamics is not applicable to deformable

I body dynamics. A force that acts at a point on a deformable body is equivalent to a system,
defined at another point, that consists of the same force, a moment that depends on the
relative displacement between the two points, and a set of generalized elastic forces that
depends on the finite rotation of the body. This is a subject of particular interest in control
applications, since in many cases the motion of the system is specified and the interest is
focused on defining the joint control forces that produces the desired motion. Nonetheless,
a close examination of the structure of the mass matrix and the forces in deformable body
dynamics and the -roper identification of the invariants leads to a systematic procedure for
the automatic genetation of the inertia and stiffness characteristics of deformable bodies in
multibody system,

Once the structure of the nonlinear dynamic equations that govern the unconstrained
motion of deformable bodies is defined, two approaches can be used to formulate the ulti-
body equations of motion. These are the augmented and the recursive formulations. In
the augmented formulation, the multibody equations of motion are formulated in ta.ms of 3

i a set of variables that include both the dependent and independent coordinates. In this

type of formulation. constraints between the variables ar formulated using a set of linear 4.
and/or nonlinear algebraic constraint equations that depend on the system coordinates and .,
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possibly on time. This leads to a mixed system of algebrazc and differential equations that
must be soived simultaneously using matrix and computer methods. In the recursive formu-
lations. the equations of motion are formulated in terms of the joint variables or the system
degrees of freedom. This leads to a smaller system'of strongly coupled equations. In this
case. one obtains only a set of differential equations that can be integrated numerically in
order to define the state of the system.

Another topic of particular significance in the analysis of substructures in multibody dy-
nanucs is the coupling between the displacements. The coupling between the finite rotations
and the deformation displacements has a significant effect on the dynamics of deformable
bodies. Significant changes in the wave phenomenon occur as the result of the finite rota-
tion. For example elastic waves in a perfectly elastic nonrotating rods propagate with the
same phase velocity. Consequently, the group velocity is constant and is independent of the
wave number or the dimension of the rod. Dispersion, however, occurs as the results of the
finite rotation and its coupling with the deformation displacements. The phase velocities of
harmonic waves are no longer equal and consequently the group velocity becomes dependent
on the wave number.

2. Finite Rotations

In the transient finite element dynamic analysis, a convected coordinate system is attached

to each finite element and hence it shares its rigid body motion. A sequence of fixed co-
ordinate systems are introduced and at any instant of time it is assumed that the axes of
the convected system coincide with the axes of one of the fixed coordinate systems. By
assuming that there is a relatively sufficient number of fixed frames, the displacement of
the element between two coordinate frames is described using the shape function and the
nodal coordinates of the element. The current deformed state is used as the new reference
state prior to the next incremental step in the transient dynamic solution. The updated
Lagrangian formulation leads to a simple dynamic equations in which the element mass
matrix defined in the convected coordinate system is constant. Furthermore, the use of
the lumped mass technique leads to constant element mass matrix in the global coordinate
system. Since several of the commonly used shape functions of beams, plates and shells can
not be used to describe finite rotation, several of existing finite element formulations lead
to a subtle linearization of the resulting dv ;amic equations. The limitations on the use of
the commonly employed shape functions ;he large displacement analysis of deformable
bodies can be demonstrated. To this end, we use the shape function of the six degree of
freedom, two node planar beam element. Each node is assumed to have three coordinates;
two describe the translation and one describes the slope at this nodal point. The vector of
nodal coordinate of the element j on the deformable body i can be written as

e t'e e e' e[
e = 1

i 2 e3 4 s()

where e"C,4, e',e and e are the translational nodal coordinates, while e.' and e' are the
slopes at the two nodal points. An element shape function associatz ,1 with this set of nodal
coordinates is

iS (2)
0 l-3fi-2f " l(f-2f '  f3) 0 3f'-2 "  J" - 2

[ where = z/1, and z is the spatial coordinate and I is the length of the element. A general
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rigid body translation can be described by the vector

R R R I (3)

where R, and R. ,re the displacement of an arbitrary point on the element. As the result
of thus rigid body translation, the vector of nodal coordinates becomes

e, = el' R, e" + R, ' ee+ R, e" +. , e

= (4)

where e'j as defined by Eq. I is the vector of nodal coordinates before the rigid body
translation and R.. is the vector

T
H- = R, RY 0 R. R. 0 i

By using simple matrix multiplication, it can be shown that

That is

e' A" e'J -i* "R, = e" - Rt

This implies that the element ncdal coordinates can be used to describe an arbitrarily large
rigid body translation. This- is a basic assumption which is utilized in our formation and
its significance becomes apparent when the dynamic equationi ure fornuslated in terms of
a mnmum number of independent invariants of motion.

2. FINITE ROTATION

If the finite elemen; undergoes a pure rotation defined by the angle 0, the position vector
of an arbitrary point at a distance z from its end as the result of this rotation is

U co t* -sin e Zcos e (5)
V }= sine c 0 Zaino

Using this equation and the definition of the sipe, one has

" e ;' = 3 = sine (6)

In this case, the vector of nodal coordinates becomes

eV = '00 sine 1cos9 Ising sine:

where I is *he length of the element. It can be shown, by direct matrix multiplication. that

*'" e = I rcos9"
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That is, the shape function of the beam element, as defined by Eq. 2, can be used to
describe finite rotations provided that the slopes at the nodal points .au be defined using
trigonometric functions as in Eq. 6. In the finite element formulation such definition- can not-
be made since trigonometric functions lack any physical meaning. The use of trig~r.ometric
functions to define the nodal coordinates introduces technical difficulties in assembling the
finite elements and in transforming the nodal coordinates from one coordinate system to
another. On the other hand, if the rotation is assumed to be small, one has

ej= e5  ;ze

rLnfirnitesimal rotations can be treated as vectors. Therefore, the rul- of transforming vectors
from one coordinate system to another can be applied to the transformation of the nodal
coordinates. Furthermore, the slopes as defined by the preceding equation have physical
meaning and consequently no technical problems arise when the elements are assembled.

2.2. COORDINATE SYSTEMS

Using a similar procedure as the one described in this section, it can be hovn that most of
the commonly used shape functions can describe an arbitrary large rigid body translations.
As demonstrated by the beam example presented in this section, some of the shape functions
can not be used to describe an arbitrary finite rotation of the element. Even though in
the cases where the element nodal coordinates can be used to describe finite rigid body
rotations as in the case of triangular, rectangular, solid and tetrahedral elements, the use of
the nodal coordinates is not convenient in describing the relative finite rotations between
the components of the multibody system.

Using the fact that the element shape function can be used to describe an arbitrary
large rigid body translation, the location of an arbitrary point on the element, as shown
in Fig. 1, can be defined in an intermediate element coordinate system 11- 1(i) V whose
axes are parallel to the axes of the element coordinate system XV Y'; Z" as

("+ e"j) (T)

where Q' is the position vector of the arbitrary point on the element defined in the interme-

diate element coordinate system, e"0 is the vector of nodal coordinates in the undeformed
state and e') is the vector of nodal deformations. The origin of the intermediate element

coordinate system X' Y'" Z'J is assumed to be rigidly connected to the origin of the body
coordinate system X' Y' Z'. In this case, the global position vector of an arbitrary point
on the element j on the deformable body i can be written as

= B' + A' (8)

where R' is the global position vector of the origin of the body coordinate system, A' is the
transformation matrix from the body to the global coordinate system and (0 is the local
position vector of the arbitrary point defined as

!I "

= s" B: B' q, (9)

in which B" is the Boolean matrix that describes the element connectivity, B' is the matrix
of the reference conditions that elinglnate the rigid body motion of the substructure with
respect to its coordinata system, q' is the vector of elastic coordinates of the deformable
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of the element can be used to describe arbitrary finite rotations such as in the case of
two dimensional triangular and rectangular elements and in the case of three dimensional
solid and tetrahedral elements, the kinematic equations presented in this section can be
used without any assumption of linearization in the large deformation analysis of flexible
imultibody systems.

3. Inertia Forces

Several techniques can be used to derive the dynamic equaions of the deforrnable body '

ithat undergoes large rigid body displacements. In. the case of unconstrained deformable
body, the application of the principle of virtual work in dynamics leads to

where Qi is the vector of the generalized inertia forces and Qi is the vector of applied external4W
and elastic forces. In Lagrange 's equation the generalized'inertia forces are expressed in ~
terms of the kinetic energy, while in Gibbs-A ppel equation the genetralized inertia forces J

I are expressed in terms of the acceleration function. Both can be derived using the basic
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is the acceleration vector of ant arbitrary point on the deforrnable body and q, is the vector
generalized coordinates of the body which can be defined using the absolute reference and
the elastic relative coordinates as

T T 
q' R& ' 9 q' (12)

Iin which 8' is the set of rotational coordinates used to describe the orientation uf the
deformable body and RI and q are as previously defined. It follows from Eq. I11 that the
generalized inertia. -ces are

.,.,T Or' 
(3

d ' (13)

which is the same as;

P, - .,T aPdV(14)

since

Oq' o~'(15)
Using Eq. 10, the kinematic relationships presented in the preceding section, and the
relationship between the angular acceleration at' of the coordinate system of the deforznable
body i and the time derivatives of the orientational coordinates, one obtains the generalized
Newton-Eider equations for the deformabla body a

rm'~ mnn in' . FI,[Q'

smmetric m'~ IJJ Q - K-ff q1  P1

where m £11 ~y ili4, ,y and m'f are the components of the mass matrix, K'/ is

the stfns matrix, I ~ t TT is the vector of externally applied forces,

and F' &T ]?gFT F1 T IT is a quadratic velocity vector that absorbs the Coriolis
and the centrfiugal force cornponents.

4. Invariants of Motion

As the result of the finite rotation, the mass matrix of Eq. 16 is a nonlinear function
of the coordinates while the Coricls and centrifugal forces are nonlinear functions of the
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coordinates and velocities. It can be shown, however, that the nonlinear mass matrix and
the nonlinear Corio.is and centrifugal forces can be expressed in terms of a set of invariants
that depend on the assumed displacement field. These invariants can be developed for each

*finite element j on the deformable body i. The invariants of the deformable body i can
then be obtained by assembling the invariants of its finite elements using a standard finite
element assembly procedure. If the shape function of the finite element can be used to
describe large rigid body translations in three orthogonal directions, it can be shown that
the invariants of the element j on the deformable body i are

j= p' S' dv (17)

IliST S;4 dV", kl 1,2,3 (8)

where p'J and V11 are, respectively, the mass density and volume of the element j and S'
is the kth row of the element shape function. The invariants of the body i can simply be
obtained as

1 I ZI;' (19)

A 74

= ZI;:(20)

where n,. is the total number of the finite elements used to discretize the deformable body
The invariants of Eqs. 17 nd 18 are given in their consistant mass form. These invari-

ants can also be expressed in a lumped mas form. In this later case, the structure of the
mass matrix does not change and it remains nonlinear function of the coordinates.

5. Equivalent Systems of Forces

In rigid body dynaics, a force that acts at a point on the body is equivalent or equspoilent i
to a system of forces, defined at another point, that consists of the same force and a moment.
Consequently, the force is defined by its magiutudi, direction and its, point of application.
On the othr hand, a moment in rigid body dynamics is a free vector which is independent
of a point of applicationand is defined-only by its manitude and direction. In deformable
body dynamics, however, a force that acts at a point, is equivalent to the same force, a
moment that depends on the deformation of the body, ad a set of generalized elastic forces .::
that depend on the finite rotation and thi assumed displacement field. Furthermore, a
moment in flexible body dynamics is no longer a free vector, it is defined by its magnitude,
its direction and its point of application. , .-

In many control applications, the desired motion of a system is specified and the interest F'
is focused on determining the jomnt control forces that produce this desired motion. This
inverse dynamscs problem must be carefully handled i view of the definition of forces and
moments in flexible body dynamics. Fig. 2 shows a model of a one degree of freedom slider .. . ,
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Fs the lderho h cranksehaftnism e3sostecakhf tru hti eurdt

proucethedesredmotion of teslider block. The results pentdin Fig. 3i are otie

bsolving the inverse dynamics problem in the case of rigid and flexible body dynamics. In
tecase of rigid body dynaics one needs to solve a system of algebraic equations. In the

whic mut be ingeneral, integrated numrerically because of the elastic degrees of freedom.
In tis aseoneobtains, in addition to the crankshaft torque, a set of generalied farces
elaticcoodintesdepend on the baundary conditions of the flexible connecting rod. If the

isnctn rdi modeled as a simply supported beam and the motion of the~ slider block

axial mdofvibration is included in the finite dimensional model.

6. Modal Coordinates

The generalized Newton-Euhir equations as defined by Eq. 18. are formulated in terms of
a coupled-set of ieferenct and elastic nodal variables. This is % finite element formula.
ttLon which w"a obtained using the physica nodal coordinates of the finite element used to
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~Figure 3. Solution of the inverse dynamics problem

d.iscretize the deformable body i. This matrix equation can be solved using matrix and
computer methods for the reference motion and the elastic nodal coordinate of the ele-
ments. This formulation, therefore, should not be viewed as a component mode type of
formulation. In a component mode formulation, the deforiable body can be treated as
one element whose deformation is described using a set of assumed modes. The differences

* between the finite element formulation and the assumed mode technique and the difference
between the obtained invariants of motion in-both cases must be clear. Component modes,
however, can be used in a finite element formulation in order to reduce the number of elastic
coordinates and eliminate iuignificant high frequency modes. To this end, a set of assumed
modes that can be determined by solving an eigenvalue problem or can be determined us-
ing ezpermentWi modal analis techniques may be used. Let B,,, be the modal matrix
that contains a set of assumed modes that are determined experimentally or by solving the
eigenitaiue problem. A change from the space of the physical nodal coordinates to the space
of modal coordinates can be achieved by using the modal transformation B',,. In this case,
one must realize that there is no change in the structure of Eq. 16; one only his to express
the invariants of Eq. 19 in their modal form. These invariants can be transformed to their
modal form according to

,= I B' (22)

,. B IB, (23)

That is. the formulatiou remains the same and any change in the basis of the elastic nodal
coordinates can be achieved by transforming the invariants of motion. Different sets of
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Figure 4. Transverse deformation of the midpoint of the connecting rod using diferent
boundary zonditions

modes obtained using diffierent sets of boundary conditions may lead to the same solution
provided that linear combination of the modes produce similar shapes. Figure 4 shows the
transverse deformation of the midpoint of the connecting rod of the slider crank mechanism
shown in Fig. 2. The results presented in thit figure are obtained using two different sets
of boundary conditions. In the first case, mode shapes of the connecting rod are obtained
using simply supported boundary conditions while in the second case the mode shapes are
obtained using a body fied coordinate system whose origin is rigidly attached to the center
of the connecting rod.

The fact that the nonlinear dynamic equations of the deformable bodies that undergo
large displacements can be expressed in terms of a set of invariants of motion suggests a
twostage computational strategy. In the first stage, the invaiants of motion as well as the :
conventional stiftness matrix are evaluated in a preprocessor computer program. This pro.
gram systematically constructs the invariants and stifess matrices of the finite elements of
each deformable body in the multibody system. These element matrices are then assembled
in order to obtain the matrices of the deformable bodies in the system. If the modal coor
dinates are to be used to reduce the number of coordinates of some deformable bodies in
the system, the invarants as well as the stiffness matrices of these bodies can be expressed
in their modal form in the preprocessor computer program. The output of the preprocessor
is a set of data that remain constant throughout the motion of the bodies. These data
are used as part of the input data to the main processor used for the dynamic simulation.
The m onal gorit the mnprocessor can be based on either the augmentedThe computational algorithm of the mainpocso€.bebedneierheag ntd!- "  ++'

or the rtecur ve formulason. The same preprocessor can be used in both cases since the
invariants of motion are characteristics of the deformable body and they do not depend on .
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the approach used for formulating the dynamic equations of the multibody system.

7. Augmented Formulation

In the augmented formulation, the dynamic equations of the flexible multibody system is

Sformulated in terms of a set of redundant coordinates. The relationships between these
coordinates are formulated using a set of nonlinear algebraic constraint equations that de-

£ scribe mechanical joints and the specified motion trajectories in the multibody system.
These kinematic constraint equations can be introduced to the dynamic formulation using
the vector of kinematic constraint equations which can be written compactly as

r iC(q,t) = 0 (24)

wtere C is the vectcr of the kinematic constraint equations that can be linear or nonlinear
function of the system generalized coordinate q and time t. In the augmented formulatton,
the equations of motion can be writt.en compactly u

e it tm M4 t = Q': + F (25)

.where M is the system mass matrix, Cq is the Jacobian matrix of the kinematic constraints,
A is the vector of Lagrange multipliers, Q, is the vector of externally applied and elastic
forces, and F is the vector of Coriolis and centrifugal forces.

7.1. COMPUTER FORMULATION OF THE JOINT CONSTRAINTS

Figure 5 shows examples of some of the mechanical joints that are often encountered in
several industrial and technological applications. The spherical joint shown in Fig. 5a has

three degrees of freedom which allow three independent relative rotations between the two
bodies connected by this joint. The cylindrical joint shown in Fig. 5b has two degrees of
freedom since it allows relative translation along, and relative rotation about the joint as.
The revolute and prismatic joints shown, respectively, in Figs. 5c and 5d have only one
degree of freedom. The mathematical formulation of these joints can be expressed in the
form of Eq. 24. For example in the case of the spherical joint we require that two points -
on body i and body j, which ae connected by this joint, remain in contact throughout
the motion of the two bodies. In terms of the absolute coordinates, thi, condition can be
expressed in the form of Eq. 24 as

where superscripts i and j refer, respectively, to bodies i and j and l, and W, are the
local position vectors of the joint definition points on body i and body j, respectively. The
vectors fk1 and/1l,, in flexible body dynamics, are implicit functions of time since they
depend on the deformation of the bodies.

In order to be able to formulate the kinematic constraints that describe the cylindrical,
revolute and prismatic joints in flexible body dynamics a set of intermediate body )ized

S. . joint coordinate systems must be introduced. Figure-6 shows body i and body j that are
connected by a cylindrical joint that allo*s ntlatie translation ano rotition between thL -
two bodies. Let X' y' Z' and X Y!,Z be the coordinate syitems uf body i said body j,

t respectiieily" For the convenience of describing the large relative displacements between the

two bodies, the intermediate body fixed coordinate systems XcF, Y Zip and X, Yp , Z p
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a~re introduced. These coordinate systems are assumed to have zero mass and inertia and
their origins are assumed, in the finite element formulation, to be rigidly, attached to nodal
ooints on the two bodies. The relative motion between the two bodiies is assumed to be
dlong the joint axis. We make the assumption that the joint axis can be described by a

I ri?,id line. Let h' be a vector drawn on body i along the joint axis. Similarly, let h' be a
vector drano body jalong the in axis a. shown in Fig 6. As shown in the ongure the .Ivector slJ has a variablt magnitude since it connects points Pi and P-1 on bodies iand j,
respectively. The kinematic constraint equations for the cylindrical joint can be written a

h, x sij (27)

I wher e

a' + R'A' 6' -RiA'~

hi Aj A' Ii'

inwih6 n 'are constant vectors defined in the intermediate body fed joint coordi-
nate~~~~~~ sytm P~ Y~Z, n ~ ~ e ctively, Ai, and Aj ate the transformationt

&atrices from heitermediat coordinate system to the body coordinate sytteans. If the

deformatiodn of bodies i ~r smdt be stal Aii ahn -are iniieialrtto
"-b'' 6Zpress in tr so hslpia od pozts -Tbi constratiiio- ":Of'Eqs. 29'and 30 Itenyfu nspds leri equations -which ire

nonlinear in the reference aid elasice coordinate 1f the two bodies.
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during the d)nanuc simulatior.

7.2. SOLUTION FOR THE ACCELERATIONS

Equations 24 and 25 represent a system of algebraic and differential equations which can-he
solved using computer and numerical methods. In order to be able to numerically integrate
this system, Eqs. 24 and 25 must be solved for the vector of accelerations. To this end, Eq.
24 is differentiated twice with respect to time. This leads to

Cq = (30) '

where Qi: is a vector that absorbs terms that are quadratic in the velocities. If Eqs. 25 and
30 are combined one obtains a system of matrix equation that is linear in the vectors of
accelerations and Lagrange multipliers. This matrix equation can be written as

M CTAj 4~ (31)

This system of equations can be solved for the generalized reference and elastic accelerations
As well as the vector of Lagrange multipliers. The obtained solution contams both the
dependent and independent accelerations. Logrange multipliers can be used to determine

;, Ithe generalized forces of the joint constraints and specified trajectories.
Another alternate approach, but numerically different, is to use the generalized coordi-

nate partitioning. In this case, the vector of system generalized coordinates can be written

q= [q qTIT (32)

where q, is the vector of system independent coordinates, and qj is the vector of dependent
coordinates. According to this coordinate partitioning, Eq. 30 can be written as

Cq,, + Cq, =41 (33)

where Cq, and Cq, are the sub-Jacobians associated with the independent and dependent
coordinates, respectively. The matrix Cq, is a square matrix and if the kinematic con-
straint equations are assumed to be inerly independent, the dependent coordinates can
be selected such that the matrix Cq, in nonsiagular. Wehage used the LU factorization
method to identify the independent coordinates. Other techniques such as the singular
v alue decomposition and the QE. method that involves Householder iterations were also
proposed. Equation 33 can then be used to write the dependent coordinates in terms of the
independent ones. In this case one has

41J = D,1ji + C,' Q,:-
in which

ThereforeB 11  Ci..CCq.

Therefore, the total vector of system accelerations can be written in terms of the independent
accelerations as

" = c,, 1 + (34)
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where

Cd, =Q fI~
[BdJ = qQ

Substituting Eq. 34 into Eq. 25, premultiplying by the transpose of the matrix C,,,, and
using the fact that CICT 0, the vector of Lagrange multipliers can be eliminated form
Eq. 25. This leads to the reduced system of equations

NfjFj = R, (35)
where Mi, is the generalized mass matrix associated with the independent coordinates and
R,~ is the vector of generalized forces associated with those coordinates.

The use of the embedding technique that leads -to Eq. 35 is not coinputationally as
efficient~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ asteueo qp1t ov o h ceeain.Frti esn q 1i

used with sparse MatnZ techniques in several commercially available multibody computer

eproientasteueo q 1t ovo h ceeain.Frti esn q 1i

8. Recursive and Projection Methods

I' It the preceding section, the use of the augmented formulation in the computer aided
anaiysis of flexible inultibody systems is discussed. In this type of formulation, the kinemastic
and dynamic equations are formulate in terms of a mixed set of dependent and independent
coordinates. In this case, one may introduce Lagrange multipliers, or use the embedding
technique to reduce the number of dynamic equations to a mninimum set. In this section,
other alternate approaches that can be used in the analysis of fleible muitibody system are
discussed. In these approaches the system kinematic and dynamic equations are formulated
in terms of the system joint degrees of freedom. If two bodies are connected by a joint, the
coordinates of one body can be expressed in terms of the coordinates of the other body as
well at the joint degrees of freedom. Using these displacement relationships, the velocity
and acceleration equations can be btAined by direct differeniation. For example, if two
bodies are connected by ayli duical joint as shown in Fig. 7, the relationship between the
reference and elastic acceltis of body i and the reference and elastic accelerations of
body j and the jointaccelerations can be written a

where G' and H' are velocity influience coefficient mtiethtdpend on the coordinates

-of the two bodies, yi is a vector tlit'absorbs termsk thit are quadratic in the velocities, ~
and if.ar the vectors of referene ankelistic acleais of bodies s and j, respectively,
and PI -is the vector of the joint -and elastic acceleratiouns of body i. In the case of the
constrained motion, the geeizaiNewton.Ruter equations of Eq. 16 can be written for

the-deforimable body ias= '
where MI is the mass matrix, q' is the victor of externally applied and elastic forces and
reaction forces and moments, Q, is the vector of Corolla and cenrifial force componants,
and Q',n is the vector of reaction forces and mammaa. Equation 36 can beused to einmate'I
the reference and elastic accelerations of body i frvo Eq. .37. This lads to a set of dynamic
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t-quat&ons of body i wernsed in terms of the reference and elastic accelerations of body
jand the joir' accelerations. Furthermre, in those equations, the joint reaction forces

iietween the tw". bodies Pre automatically eliminated. This procedure can be continued
,ram JflC bo.dy o an,;her until th.e base body is reached, leading to a system of dynamic
equ'Vions expressed wn terms of the degrees of frej.dom.

1,ts xii 1,g recursive methods lead to sma). systems of strongly coupled equations.
Tiho ccefficient matrix of the acceleration equation is dene and nonlinear as the result of
tht, I.. ,e relatiie displacement between the interconnected bodies. Decoupling the joint
and elatic accelera~anns in these equations will require Anding the inverse or the LU fac-
torisj~tion of nod,; .ni .-cstrict-1 who"e dimension 6opendt, on the number of elastic degrees
of &Wet :-m. Coni..tuently speaking of the order of an~ al-gathm becomes meaningless since
the number of elastic coordinates varies from one body to another. Revently, a recursive
muethiod that systematically dicouple the joint and'selastic acceleration was proposed. In
this method, the gonrle Newton.Euler equations; the relitionship between the abso-
lute, elastic and joint acelations, and the recinfreequations are combined in order <
to form a system of looieli coujiled eiquations which has a sparse matrix structure. By
using 'matrix, partitioning, the Coupling be tweein the joint and elastic accelerations can beIi eliminated. This leads to smaller system of equations erpmssed in terms of the joint accel.
erations and joint reaction forces. The dimension of the coefficient matrix in this system
is independent of the number of elastic coordinates. This procedure can be demonstrated
b~y utilizing Eq. 38 to write the absolute and elastic, accelerations in team of the joint and

tiastc acclerato as41 - -

AqP - 1-1

(38)



where subscripts r and f refer, respectively, to the absolute reference and elastic coordinates,
P, is the vector of system joint coordinates, Artp and Al are velocity influence coefficient
matrices, and -y, is a vector that absorbs terms which ane quadratic in the velocities.

aslTe equations of motion of the flexible multibody system expressed in terms of the
abouecoordinates can be written as

M4 Q +t F (39)

wheire M is the system mass matrix, ci is the vector of absolute accelerations, Q is the
vector of forces that absorbs applied, centrifugal1, Coriolis and elastic forces, and F is the
vector of joint reaction forces. Equation 39 can also be written as

MFM iF 11 Fq
4~ ~ MitK I + [2 (40

where, as previously pointed out, subscripts r and f refer, respectively, to the rigid body
and elastic coordinates.

The joint reaction forces must satisfy the identity

111 I% P] 0~J- (41)

and consequently

,I p 0 (42)

F1 T =-fF, (43)

These equations show that the joint forces associated with the elastic coordiinates do not
introduce new independent variables. These forces can be determined by using the joint
forces associated with the reference coordinates.

Substituting Eq. 43 into Eq. 40, one obtains

M,,, + K/4~1  = Q, + F, (44)

M/,4, + M1114j = f I (46

The first matrix equation in Eq. 38 can be written a

Cmbrp?' Eqs 42, 4,1 + '7, (48)

Coming q. 2 464, and 48,.one obtains

I -1ftP 1  0 -a1pp F

This system of equations has a dimension equal to 12n +s n, t n, where n is the total
number, of bodies,, Iis the totul number of elastic degrees of freedom, and n, is the total4
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number of joint coordinates. The coefficient matrix in Eq. 47 is symnnetric and sparse.
This system can be solved in order to obtain the absolute, joint and elastic accelerations as
well as the joint reaction forces. Note that the joint and elastic accelerations are coupled
in this equation. If the number of elastic degrees of freedom is large, the solution of Eq. 47

at every time step can be computationaLily expensive. The joint and elastic accelerations
can, however, be decoupled leading to a smaller system of equations whose dimension is
independent of the number of elastic degrees of freedom. To this end, one can utilize the
fact that the matrix M 11 is a constant positive definite matrix. This is usually the case
when a consistent mass formulation is used or when the modal coordinates are employed.
Using M 11 as the pivot element in Eq. 47, one can use a simple Gauss-Jordan elimination
procedure to obtain the following reduced system of equations

(M..- M(,M)MI,) (I+ K -i

(I + IMI M) -11PIM*) T F1,, -Y'

[ Q,- MqM_]Q 1
S= ,. + lptM1jQ/ (48)I. 0 0

Ii The dimension of this system of equation is independent of the number of elastic coordinates
of the system. Furthermore, the coefficient matrix remains symmetric. This system can
be solved for the absolute reference and joint accelerations as well as the joint reaction
forces. The elastic accelerations can then be obtained by solving Eq. 45. Since M11 is
a constant matrix, the solution for the elastic acceleration is trivial, especially in the case
of using the modal coordinates because M 11 is a diagonal matrix in this case. It can be
shown that the matrices (M,- and M T on the main diagonal
of tha coefficient matrix in Eqo 48 are blck diagonal matrices. Consequently, a recursive~ ~pro3o tion procedure which has a copuaio] advantage over existing order n algorithms,

because it is independent of the number of elastic degrees of freedom of the system, can be
applied.

9. Linear Theory of Elastodynamics

The dynamic equations of flexible multibody systems ae highly nonlinear because of the
finite rotation of the deformable body reference. A solution strategy that has been t.-ed
in the past is to treat the multibody system fnst as a collection of rigid bodies. General-
purpose multi-rigid-body computer prorams can then be used to solve for the inertia and
reaction forces. These inertia and reaction-forces obtained from the rigid body analysis
are then introduced to a linear elasticity problem to solve for the deflection of the bodies

min the rnibody systems. The total motion of a body is the obtained by superimposing
the sinallelastic deformation on the arss rigid body motion. This approach is usually
referred to as the linedr theory of elstodynamics. In this approach, rigid body motion
and elastic deformation are not solved for simultaneously. Furthermore, the effect of the -
elatict deformation on the rigid hody motion is neglected. This assumption, however, may
not be valid when high-speed, -meight.mechanical system are considerr.d. The effect A
of the coupling between the elastic deformation and the:gros rigid body motion may be

ider to understand the, dynamic formulation basd on thelinear theory of elastody-



namics we write the equations of motion of the deformable body in the following partitioned
form:

IMe' M"1 1

1 + K',,J1[ 49

wher Re =0'T 6  is the vector of reference coordinates of body i, subscripts

4r and f refer, respectively, to reference and elastic coordinates, and Qi is the vector of
gneralised forces, including the external, reaction, Coriolis and centrifugal forces. Equation

* 49 yields the following two matrix equations:

M'r + M" = (50)

Mlf, 4.+M 1 j4'f +K 1 j q (

In the Linear theory of elastodynamics, the term M'j'in Eq. 50 is neglected. Furthermore,
the matrix Me,. and the vector are vaumed not to depend on the elastic deformation

oftebody. Using these assumptions, one can write Eqs. 50 and -A as

=V (52)

M1,+ K' 1q1  4 ' - M-1,~ (53)

Fiur S.Takdeil
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U Equation 52 can be solved for the reference coordinates, velocities, and accelerations usingrigid multibody computer programs. The information obtained from solving Eq. 52 canthen be subtituted into Eq. 53 in order to obtain a linear structural problem. Equation 53can then be solved for the vector qt by using any of the existing linear structural dynamics
programs.

The linear theory of elastodynanics remains a viable approach in the dynamic analysisof many mechanical system applications. An example of these applications is tracked vehl-
cles as the one shown in Fig. 8. A two dimensional planar model of this vehicle is shownin Fig. 9. The deformation mode of the chassis of the vehicle are of low frequency andconsequently including the inertia coupling between these vibration modes of the chassis.g.. ly motion of the vehicle in the dynamic model does not lead to numerical
roatemi TFP .tack links on the other hand are very stiff and consequently the use of thevi b-~on moc,.. of the track links in the nonlinear dynamics leads to numerical difficulties

a. integration of the system equations of motion. In this case, the stresses in the track links
4 be efficiently predicted using the linear theory of elastodynainics.

t

i ' I

20 34

Figure 9. Two dimensional model
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APPLICATION OF COMPUTER AIDED KINEMATICS TO MODELLING OF CON.
TACTS IN ROBOTIC MANIPULATION

.1. DE SChUTrER, H. BRUYNINCKX and S. DURTR
Katholieke Universiteit Leuven
Department of Mechanical Engineering, Division PMA
Celestijnenlaan 300B. B-3001 Heverlee

SBelgium

ABSTRACT. This article presents a kinematic approach to the modelling and the motion specifica-
tion of robotic manipulation tasks in which the manipulated object is constrained by contacts. The
presented approach takes into account complex and time varying motion constraints, and is very
appropriate to be integrated into CAD based task planning and control.

The description of the interaction between the manipulated object and other objects in its
environment is based on the first and second order approximations of their geometry around
the contact areas. From these geometric descriptions, tiemanipulated object's nominal motion
freedom and its dual, the set of possible reaction forces, are then modelled using the similarity with
the kinetostatics of kinematic chains..

The kinematic approach is illustrfted with tlie important example of the classical peg-in-hole
problem. The approach offers new top4 to rlably model and specify the insertion motion of the
peg, even in the case of very larg misalignmtt .ts between the axes of peg and hole.

1 Introduction

Robotic manipulation tasks very often involve contacts between the object att..):ed to the
manipulator (called the manipulatsdobject, or "MO" for short) with other objects in its environment
(called "ENV'for short). In many cases, the presence of contacts is indispensable for the execution
of the manipulation, since 1) the contacts belong to the goal position of the MO, or 2) during the
motion they reduce (part of) the inevitable uncertainties between the relative positions of MO and
ENV. However, the contact interactions limit the, motion freedom of the manipulated object, and
generate contact forces. Hence, the manipulator needs some active or passive means to react safely JI .
to these forces, and it the same time to continue ihe'destied manipulation action. Anyway, both
the active and passive approaches (i.e., force control, res ctively compliance at the end effector) .

z can deal-only with'limited inaccuracies between the desired nominal motion of the MO on the one
hand, and the rea motion freedom of the MO as allowed by the ENV on the other hand. Therefore, "
a good nominal specification of the desired motion remains idispenable.

For the traditi6nal robotic iirnipulation tasks, this specification relies on the human program-
mer'e implicit mentil mode ot &e MO's motion freedom. However, if the motion constraints
become m6re omplex, or if the-task specification has to be generated by an automatic planning
system, more e klicii models ale reluired. as well as a systematic, computer assisted approach. "

4 "Geometric models'are the appropriate building blocks with which to construct a computer aided
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Itask specification system for constrained robotic manipulation tasks: the description of the surfaces
of MO and ENV around the contact areas determines the type of the contacts, as well as -up to
non-ideal effects- the corresponding motion freedom of the manipulated object.

, 1 The intensely studied peg-in-hole task is a prime example of the difficulties which occur in
the motion specification of a manipulation task. Fig. 1: most references, (following Whitney's
seminal paper, (19P2)) only discuss active or passive means to further insert the peg into the hole

*after an initial small insertion has already been established; the main problem is then to avoid
extraneous forces, wedging and jamming. However, the question of how to reach this initial
position is neglected. The kinematic approach presented in this paper offers a (partial) solution to
this problem: once the bottom of the peg has made contact with the rim of the hole, a systematici method is presented to align the axes of peg and hole. even if the initial misalignment is very large.,

The same ideas are applicable to a wide range of motion constraints on the manipulated object.

i -
tI

Figure 1: Peg-in-hole. If the axes of the peg and the hole are very badly aligned, it is not
straightforward to specify the desired motion of the peg, especially since its instantaneous motion
freedom is continuously changing during the task.

t Force control (also called compliant motion) is undoubtedly the most intensely studied part
of the constramied manipulation problem. This could give the impression that modelling and
specification are trivial. Maybe this is the case for veiy simple force controlled tasks, as described
by Mason (1981) and De Schutter and vai Bnssel (1988): pg in hole (with partly inserted peg),
following a surface with a point contact, opening a doo, turing a crank or a screw, ... A

Thesesimple, or elementary. complianttasik can bspe ed withthetaskframorcompliance

frame approach, DeSchutter and an Bmssel (1988).h'ak frame with its naurql constraint
directions serves as a geometric model of the motion const., And indeed, for tasks.with a simple
contact geometry the relation between this coritt gei e tr d the force controlled.directions (i.e.
the natrconstraint directions) and the-velocity controlled directons (i.e. the artificial constraint . b-

directions) in the task frame is quite straightforaid itutively clear.
However, this i not the casefor tasks withcomplmox nion;constrints. A motion constraint is

,complexiitis te combinaton of several simple cnstints, and if this combination
is time a ,.2See g 2for an example. Time vanince means tha the relative locations of some

of ihi eli'-entaxycsirain'-z change iiig the execii itlkiaik. set the peg..iui-hole example. V
i~t s 'p'4Oer presents a model based compromis eline miiideling cost, on line mod- !: J)> :
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elling accuracy, and flexibility in the task specification: the compliant motion task relies on simple
off line models of (a combination of) elementary motion constraints: these moels e easily
adaptable on line and they allow a user friendly task specification.

, Other authors have already presented model based approaches to cope with motion consraints.
Montana (1988) describes the kinematics of grasping objects with robotic fingers equipped with
tactile sensors. Cal and Roth (1986, 1988) give a very thorough and complete descnptzon of
the nominal kinematics for the relative motion of objects under point and line contacts. These

approaches are of a much higher complexity than the one presented here. Moreover, they are more
difficult to use on line, and not well suited for complex motion constraints.

I 'I
[ct 11

i q Figure 2: Complex time-varying motion constraints. Left: moving a block subjected to two or
i ~ ~three simultaneous contacts poses motion specification problems if the goal situation is a non- 'equilibrium position. Right: a vertex-face contact at the left side of the MO, plus afaceoface contact

at its bottom.

Motion constraint models exist on differt levels of abstraction, and for a wide variety of

applications. On the highest level the motion constraint is described as a list of elementary contacts,
which act simultaneously on the manipulated object. This is the topological or symbolical model
of the constraint. It contains the type of each elementary constraint. ano a pointer to the geometric
entities (face. edge, vertex. surface, .... ) involved. This level of motion constraint models isgenerally used in off le, CAD based task planners for compliant motions, orfine motions, as they
S are often called in this context The vocabulary ofelementary contacts used at this level is rather

uniform: viix-su~jace, edge-edge, etc.- Buckley (1989) and Laugier (1989) deal with the problem
of automatically generating sequences of complt actions to reach a user specified goal. Xiao
and Volz (1989), Xiao (1992) and Desai and Volz (1989) also started to examine how to verify
the current motion constaint, and replan the task whenever a deviation from the nominal plan is
detected at execution time. The common limitation toall mentidned planners is that they offer
no interface to an on line task controller: their plans are expressed as sets of elementary motion
constraintsi together with a purely geometric specificationof the motion. Moreover, this motion
specification invariably uses bnlya very limited subset of the total available motion freedom: pure
translations or pure rotations.

This paper covers the modelling and motion specification aspects of constrained manipulation,
within the framework of kinematics of complex chains, Angeles (1988). To this end, each elemen-
tary contact is replaced by an equivalent kinematic chain, called a virtual (contact) manipulator.
The topology of the chain is given by the type of the contact: the local surface geometry around the
contacts determines the numerical description of the chain: link lengths, current "joint" values and
limits, etc. Simplicity of the models is emphasized. because: ,;

I. The user interface of the computer assisted motion specification system must remain simple.
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2. Exact modelling is practically impossible, or too costly.

3. It is assumed that the manipulator has some active or passive robustness against small
uncertainties in the generated motion specification.

The kinematic approach permits the use of well-established tools, terminology and algorithms from
kinematics: revolute and prismatic joints, twists and wrenches, Jacobian matrices, etc.

Local geometric models exist at different levels of detail:

1. First order, or polyhedral: the position of the contact point and the direction of the contact
i ! normal. !,

2. Second order: i.e., the first order description, plus curvature information at the contact point.

3. Higher order. This level is not discussed in this text, because it is incompatible with the
requirement for simplicity.

Section 2 introduces the terminology to describe motion freedom and constraint reaction forces.
This is followed in Section 3 by the kinematic models for elementary and complex motion con-
straints, and the corresponding mathematical representations. Finally, Section 4 applies this theo-
retical framework to the peg-in-hole example.

2 Motion Constraints: Concepts

This Section elaborates the concept of elementary motion constraint, which appeared already
!j in the Introduction. Then follow the definitions of the twist and wrench systems of a motion

constraint. They are the basic mathematical representations to link the geometric descriptions of

i the contacts on the MO to motion specification for the manipulating robot. The last subsection
explains reciprocity, i.e., the physical duality telationship which always exists between the wrench

and twist systems of any motion c'onstmaint.

2.1 ELEMENTARY MOTION CONSTRAINTS

The point contact (or surface-surface contact) between two rigid bodies is the simplest physical
model of a motion constraint. Stricty sp ea"g,,it is the only really elementary motion constraint,
in the sense that all other motion constnts consist of-a (possibly continuous and infinite) set
of point contacts. HoweVer every field of application has its own particular set of "elementary"
constraints. i.e. those that belong to the standard vocabulary ofthe field, and that are assumed to be
the most basic and simple cnstraints needed to describe all systems in the field. Some examples:

Assimbly The polyhedral contacts (vertex-face, edge-face, edge.edge, face-face), or the mixed
p I olyhedral-non-polyhedral virtex-suifce contact A face is a planar pgrt of an object; a
sur e ed eection of faces, and a vertex is the intersection of

:- .~~~two or more edges. :,-" '

Robot c hands he constraints consist of soft and hardfinger contacts, with sufficient friction to

prohibit slpping.

Linkages The'thedry of machines and mechanisms makes use of all types of joints. The revolute

and prismaticjoints arie the elementary ones. '.4

AV,
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Elementary motion constraints are the building blocks for all possible motion constraints in a
particular field. Such a combination of motion constraints is called a composite constraint. This
paper reformulates the elementary and composite motion constraints appearing in such fields of
assembly or robotic hands as linkages of prismatic and revolute joints.

2.2 TWIST AND WRENCH SYSTEMS

To specify a constrained motion task, it is important to know how the MO can move, without
breaking the desired contacts, and without generating excessive reaction forces. For any motion
constraint on the manipulated object, either elementary or composite, mathematical models of these
sets of possible motions and forces are given by the following two vector spaces:
Twist system This is the vectorspace ofall instantaneous velocities, orinfinitesimal displacements,

that the MO can have with respect to the ENV, without breaking the contact, Lipkin and Duffy
(1988). A twist t is the ordered combination of an angular velocity vector C and a linearvelocity vector V t = (ca, Q-). The notation for a twist system is T.

Wrench system The vector space dual to T is the wrench system W of all ideal reaction forces
that can be generated in the contact. A wrench w is the ordered combination of a force vector
f and a moment vector M: w (f, 61).

4 Twist and wrenches are kinetostatic applications of the geometric concept of a screw, i.e., the
ordered combination of a fine vector and afree vector, Lipkin and Duffy (1988).

The %act that T and W are vector spaces is mathematically appealing, because the systems are
totally known if a basis for them is known. A possible drawback is the local validity of the models:
in general, T and W change during the motion of the MO. It is also important to realize that:

. T and W arefirst ordermodels, since they only describe the instantaneous motion freedom.

. T contains velocities or infitesimal displacements. so that it gives no information about the
motion freedom of the MO underfinite displacements.

9 W contains only the ideal and static reaction forces, i.e. no friction, elasticity or dynamic
effects are modelled.

For elementary motion consuints it is straightforward to describe the instantaneous motion , :

freedom of the MO. For composite constraints the modelling is more complicated. However, the
following procedure leads to the desired result:

1. Construct the T's and W's of the composing elementary constraints.

2a. If a set of n, elementary constraints on the MO act in parallel, then the twist system of theg composite constraint is the vector space intersection of the twist systems of the composing
constraints. The wrench system is the vector space sum of the wrench systems of the
composing constraints. Formally one writes: s otwn yes h

4 . TIT 2n... nTn, Wp WI=W +W 2 +...+Wnc. (1)I * 2b. If the elementary constraints act in series, the abovementioned relations are interchanged: ,2+.. ,Ws;> ..'n ,

T " = T+T 2 +...-Tfe, WT + W ! lW 2  ... n W n'. (2) .4

Numerical implementtions of this procedure are supported by reliable and stable algorithms, based
on Singular Value Decomposition of the matrices representing bases for T and W, Golub and Van I ,~~Loan (1989). "'j
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2.3 RECIPROCrrY

The twist system T and the wrench system W are dual vector spaces. In a strict mathematical
sense this means that to each wrench wthere corresponds a linearform Rw(t) over the space of twists
t. (A linear form is a linear mapping from a vector space to the line of real numbers.) Similarly, a
linear form Rt(w) over the space of reaction forces is defined. The physical interpretation of this
linear form is as follows: it represents the virtual power that the motion t generates against the~wrench W:w cRt(w) = Rw(t) = + T. q. (3)

If, with a small abuse of notation, t and w represent also the coordinates of a twist and a wrench
I with respect to a reference frame, the numerical equivalent of Eq. (3) is:

Rt(w) = RW(t) = wTA t, (4)

with, I [ ]' = 3X3 I3x3 (5)I~~3X3 03x3"(5

If For compliant mimipulation tasks, the motion t of the MO does not break the contact with the ENV,

and the virtual power generated against the ideal reaction wrench w vanishes. One says that t and
w are reciprocal: WA wt = ffi'-Co + F-"q= 0. (6)

This reciprocity condition remains valid under serial and/or parallel composition of motion con-
strants.

3 Kinematic Models

As mentioned before, the surface geometry of the contacting rigid bodies determines the
resulting motion constraint, because of the mutual impenetrability of the bodies. Hence, this
Section starts with a simple geometric model of these surfaces, as given by their first and second
order differential geometric poerties. Second, it derives the relationship between this geometric
description of each of the indi idual objects, and the features of their interaction, i.e., the contact.

Thid, it translates the concepts of motion freedom and constraint into equivalent kinematic models,
and finally into their mathematical representations. Kinematic modelling of motion constraints has
the following advantages:

o Standard terminology and algorithms of mechanisms and manipulators are available.

. There exists a close correspondence between, on the one hand, the first and second order
geometry of a motion constraint, and, on the other hand, the kinematic model.

o Specification of the desired motion of the MO becomes intuitive and yet unambiguous: it
boils down to deciding which are the drivingjoints in the kinematic model, and what are their I >.: ~~desired speeds. " -

The kinematic model for ajoint constraint is trivial: it is the joint itself. For a contact constraint only
the reciprocal motion freedom is modelled, i.e. these motions allowed by the contact and which do
not break thecontactL This is, by definition, not a limiting assumpti6n for the manipulation tasks
discussed in thistext. Moreover. it eliminat.s the distinction between (the models of) contact and
joint constraints.

4M.
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3.1 DESCRIPTION OF LOCAL GEOMETRY: GEOMETRIC FRAMES

In general, the surfaces of MO and ENV contact each other in one or more discrete contact
points. For each of these points, the surface of both objects is of one of the following three types: aIsmooth surface, a smooth curve or a vertex. In differential geometry, the local geometry of a surface
or a curve in the neighbourhood of a point is characterized by an orthogonal reference frame:

I. Smooth surface. The tangent plane (i.e., two independent tangent vectors) in any point on
the surface is uniquely defined by the object's geometry. An orthogonal reference frame,
the so-called principal frame, is defined as follows, O'Neill (1966): its origin lies in the
contact point, one axis lies along the normal at the point, and the two other axes lie along the
directions of minimum and maximum curvature. These are called the principal directions of
curvature, and are always orthogonal and uniquely defined, unless the object is umbilic, i.e.
the curvature at the contact point is equal in all directions. This is the case for spheres andi planes. "

2. Smooth curve. The tangent to the object has a unique mecning in only one single direction.

. Yet, for each point on a curv'e. an orthogonal reference frame, the Frenetfirame, is defined:
one axis along the tangent, one along the normal (i.e., pointing to the centre of the osculating

circle), and the third one, the binormal direction, orthogonal to the other two. The Frenet
frame directions are. uniquely defined, unless the curve is a straight line.

3. Vertex. A unique definition of tangent vector or tangent plane is impossible.

So, in a contact point, each of MO and ENV has its own orthogonal reference frame, which is, in $

general, fully determined by the first and second order geometric parameters of the surface: the
tangents, normals and directions of curvature. The frames are called the geometric frames at the
contact point, and denoted by {geo} for the MO and {ged} for the ENV. However, the geometric

parameters do not completely determine the geometric frames in the case of:

* Umbilic surfaces: the tangent plane is uniquely defined, but not the principal directions.

* Vertices and straight lines: the tangent plane is not uniquely defined. A

3.2 DESCURION OF CONTAC. CONTAcr FRAMES

Geometric frames merely model the local geometry of the contacting object; they are indepen- *

dent of how MO and ENVare contactingeachother. Hence, geometric frames do not unambiguously
describe the contact geometry, especially in the case of curves and vertices. To this end contact
framesareintroduced. AcontactframeisdefinedforbothMOandENV. Theyarenamed{con}
and {con'), respectively. Their origin lies at the contact point, and one axis lies along the contact
normal. Furthermore:

. . ." ~1. Smooth surface: the other two axes hie along the principal directions of curvature. Hence, -:"
for a smooth surface, the contact frame coincides with the geometric frame. Hence,

2. Smooth curve: one axis lies along the tangent. Hence, for a smooth curve, the contact frame %

and the geometric frame coincide, except for a rotation about the tangent.

3. Vertex: the contact frame and the geometric frame only have their origin in common. A.

The geometric frame {geo and the contact frame { con} coincide for a smooth surface, irrespective
of the geometry of the ENV, but not for a smooth curve or a vertex. This is because curves and
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vertices do not possess two independent tangent vectors in the point of contact, as explained in 3.1.
Hence, the definition of the contact frame for a curve or vertex of the MO requires the knowledge of
one or two of the tangent vectors of the ENV, and vice versa. For the same reason, the edge-vertex, i

, €vertex-vertex or edge-parallel edge contacts are unstable: no two independent tangent vectors exist.
i:. that contact normal and tangent plane are also not defined.

3.3 KINEMATIC MODEL OF POINT CONTAC. VIRTUAL MANIPULATORS

In principle, the equations describing the geometry of the surfaces of both MO and ENV
are sufficient to model the instantaneous motion freedom of the MO. However, the use of these
geometric models for the specification of the desired motion is not straightforward. Therefore, the
geometric model is replaced by a kinematic model: this means that the MO and the ENV are linked
by a virtual manipulator, which gives the same reciprocal motion freedom as allowed by the contact.
The motion of the MO is then expressed as the "joint motions" of this virtual cbntact manipulator.
The kinematic structure of the virtual contact manipulator is, as much as possible, determined by the
local geometric properties of the contacting objects, as described in subsection 3.1, i.e., the tangent
vectors and the principal directions (and centres) of curvature. The virtual contact manipulator
consists of three connected sub-manipulators:

1. SLIP. This first sub-manipulator has two degrees of freedom, which correspond to the motion
of the contact point on the surface of the MO. It links the MO to the {con} frame as follows.
F'rst. choose a reference frame {base} on the MO, which serves as the base of the virtual -.
manipulator. {base} is chosen arbitrarily. Furthermore:

Smooth surface. Connect the base frame to a -volute joint at the centre of curvature cor-
responding to the largest radius of curvature, and with its joint axis parallel to the
direction of maximum curvature; connect to this joint a second revolute joint, at the
centre of curvature corresponding to the smiallest radius of curvature, and with its joint
axis parallel to the direction of minimum curvature. Connect the contact frame {con)
to this second joint, see Figs. 3 and 4.

* Smooth curve. Connect the base frame to a revolue joint at the centre of the osculating
acircle and with its axis parallel to the direction of the binormal. Attach it to a second

revolute joint along the tangent at the contact point. Connect the contact frame {con}
to this second joint.

Vertex. Connect the base frame to two revolutejoints, both in the vertex, and with their axes,
in principle, in arbitrary directions. So, one could prefer to make these axes parallel
to some of the other axes in the total virtual contact manipulator. Connect the contact
frame {con} to the secondjoint.

2. ROT. A one degree of freedom manipulatot, connecting SLIP and SLID by a fifth revolute v.~joint along the common contact normal axes of {con) and {con!)..f ,3. SLID. This third sub-manipulator, with base frame {base} is similar to SLIP. It has also two

degrees of freedom,. corresponding :o the motion of the contact point on the surface of the
ENV. itlinkstheENVtothe{c6n'}frameinasimilarwayasSLIP UnkstheMOto{con}.

- The twist system T of the MO due to these virtual manipulators is the union of the following
subspaces: ,-

1. Ts" (sipoping): motion of the MO due to the motion of the joints in SLIP. This does not
move thecontact point with respect to the ENV, but it does change the contact point on the . .

sur aeoft the.MO. See Fig. 3. 0
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Figure 3: Virual manipulators. Virtual manipulatrs for the case where both MO and EMI are
smooth surfaces (left). Slipping (middle) moves the MO without changing the contact point on the
ENV. Sliding (right) moves the MO without changing the contact point on the MO. For reasons of
clarity, the figure shows only 2D motion.

2.71(rotation): motion about the common contact normal axes of the contact frames, i.e.
moton of th ROT manipulator. The contact point does not move in space.

3. T"id (sliding: motion of the MO due to the motion of the joints in SLD. This does not
move the contact point with respect to the MO, but it does change the contact point on the
surface of the ENV. See Fig. 3.

The special combination of slipping and sliding such that the contact points on the surfaces of MO
and ENV move with the same instantaneous velocity, is called rovling.

With these subsystems of motion freedom (each corresponding to parts of the virtual manipula-
tor), the specification of the desired instantaieous velocity of the MO is performed in a model based
and user friendly manner. One should keep in mind, however, that. in general, for a compliant
motion task only instantaneous velocities or binieia displacements are specifiable, but not
finite displacemensI

During online execution ofacompliangmotion ttheeMO's measured motion t isdecomposed
into components of the abovementioned subspaces:

t =lp + tr( +alU. (7

S This decomposition gives the following model update infornaton: both contact frames are rotated
Wm each other over the rotation component ti04, the contact frame has moved over the surface
of MO by the slipping component t'"P, and over the surface of the ENV by the sliding component
td See 3.9for more deiails.

f 3.4 MATHEMATICAL REPRESENTATION: JACODIANS

Slipping, slng and rotation completely define the five degrees of freedom of the manipulated
object with respect to its environment, as allowed by the second order model of the contacting
surfaces. This subsection presents a numerical description of this motion freedom, based on the
reference fram definitions of the previous subsections. he only things that are still missng are:
1) a systematic naming econvention for the reference frma e X, Y and Z), and 2) the matmrces

tese tmg nnenrical bases for the twist and wrench systems of the motion constraints (ie.. the
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3.4.1 Geometric Frames First, the axes of the geometric frames {geo} and {geo') are chosen
in a systematic way, see Fig. 4:

1. Smooth surface. The Z axis lies along the surface normal: the X and Y axes along the
directions of minimum, respectively maximum curvature. Freedom of choice for X and Y if
the surface is umbilic in the contact point.

2. Smooth curve. The X, Y and Z axes lie along the tangent, binormal and normal directions,
in this order. Freedom of choice for Y and Z if the curve is a straight line.

3. Vertex. Full freedom of choice. A practical choice is to make the geometric frame {geo}
coincid- with the contact frame {con} defined in the following subsection.

fbase)

•V
X (geo) z (con)

smooth surface curve
(base) l ..

z zcj

(geol = (con)

smaight line (edge) vertex ((geo/ and (con)
chosen to coincide)

Figure 4: Geometric and contact referenceframes. For each of the contact classes, the location and
the relative motion freedom of the {geo} and {con} reference frames, with respect to the {base}
reference frame, are indicated.

3.4.2 Contact Frames Second, the contact frames are defined: the origins of {con} and {con'}
lie at the contact point; their Z axes lie along the contact normal, and point "into" the MO and
the ENV, respectively. This mean that the Z axes of f{con} and {con') have opposite directions.
Firkherhore:

1. Smooth suface: X and Y coincide with the X and Y axes of the geometric frames. k

2. Smooth crve: X coincides with the X axis of the geometric frame, i;e.. the tangent to the u4
curve. The Y axis is derived from the knowledge of X and Z.
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3. Vertex: The contact frame for a vertex MO is fully determined by the contact frame of the
ENV, and vice versa. 1he easiestchoice is to let {geo}, {geo' }, {con} and {con') all coincide
(taking into account tha the Z axes of the primed and unprimed frmnes are in the opposite
directions).* t

3.4.3 Tranfrmations Third. the transformations between all the frames are defined in terms
of a simple, minimal and unambiguous set of geometrical parameters:

1. {con} -- {geo}: this transformation is the identity transformation, except for

Smooth curve: the Z axis of {con} is rotated about --. common X axis (tangent direction) ,
over an angle p=.

Vertex: in case the geometric frame and the contact frame are not chosen to coincide, the Z
axis of {con} is first rotated about the X axis over an angle p,, then about the Y axis
over an angle p.. Remark that the order of the rotations matters, because p and Pt are
in general offinite magnitude.

2. {con') -* {ged}: similar to the previous transformation, with only a notational difference:
the possible rotation angles are called ?I- and i q.

3. {con} -+ (con}: these frames only differ by 1) a rotation over 180 degrees (about X or Y)I. since the Z axes have opposire direcions, and 2) a rotation about their common Z axis. This
rotafon angle is called p.ii

3.4.4 Jacobians A basis of the twist system T is given by the 6 x 5 Jacobian matrix J 2 n',
composed of slipping, rotation and sliding:

J ..W = [J.sP J.,o<: J slid (8) .

The meaning of the term "Jacobian" is exactly the same as in robot kinematics: each column ofIi the Jacobian represents the velocity of the "end effector" of the virtual manipulator corresponding
to the velocity in one of the manipulator's joints. The different sub-Jacobians are expressed in
terms of the geometric parameters of the contact, and in the frame which results in the simplest
representation. See Fig. 4 for the definition of the reference frames.

1. The SLIP Jacobian is expressed with respect to {geo}.

Smooth surface. Its first column represents the rotation about the first revolute joint of the
SLIP virtual manipulator. This joint lies at the centre of curvature corresponding to the ,
largest radius of curvature. Its axis is parallel to the Y axis. The distance between this
joint and the contact point is noted r,.. Similarly, the second column represents the
rotation about the second revolute joint of the SUP manipulator. Its axis is parallel
to the X axis. rmo is the distance between this joint and the contact point; it is the
smallest radius ofqcurvature at the contact point. Hence:

; 0 0l +',,'+' = F - o l ,_ _ __
=  b= 1(9) . i .+

-rrlnfa 1 + a2' 2 (
AA.oj 

-
"

The particular form of the columns of this Jacobian allows limit transitions for the radii
of curvature going to zero oto infinity.

q, ,
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Smoth u"' Th diectonof maximnuml curvature degeactares, and only the curvature

cirleandcorespndqto a rotation about a revolute joint placed in the centre of this

.Hecthe SPJacobian becomes:

jaip = 0 01 1)'
a0

geo -r' a 0 * a.0. 0
0 0

This is consistent with the Jacobian for a smooth surface since Eq. (10) is the limit case

of Eq. (9) for rZO',- 0.
Vertex. The directions of both maxmum and minimum curvature are degenerated. Since

the two joints of the SUIP manipuslator correspond to rotations about the contact point,

the Jacobian becomes:
0 1
1 0

0 0

0 0

once again, this is the limit of the previous Jacobians for r=, r' - 0.

2, Thie ROTJacobian it expressed with respect to {con} and {con'}, and is very simple:

co--o cn Io (12)

3. Thbe SLID Jacobian is expressed with respect to {ged}: .. 4iJ' is completely siia to
geoJ'upo i.e., replace all "mtd's by 'env"s. For symmetry reasons, however, the order of the

columns is interchanged. C

L The three uppermost rows of the Jacobians represent angular velocities (with physical units 1/time),
the three r-'ws at the bottom are translational velocities (with physical units len gthtime).
The coefficients a and b are chosen in such a way as to allow an easy transition to the limiting cases
with zero or infinite curvature. These coefficients are not dimensionless: their units are 1/time.
Hence, the Ils in the nominator and denominator also have the appropriate physical dimensions: the

nominator has units of I1/time. the I in the denominator has units of Length squared. This should %
be kept in mind whenever a change of physical units is performed.

408
IPM

'~T~<T. 7~ - N , ~4.-7

11Z

_ _ _ _ _ _ 'T, P



Ap

3.4.5 Transformation of Jacobians Finally, a Jacobian expressed with respect to a reference
frame {a) is transformed to another reference frame {b} using a screw transformationM m ati S:

S j, aSR03x
bJi aJ [ aR 0x (13)

03,13 is the 3 by 3 zero matrix. b4R is the rotation matrix between both reference frames. (rbx ] is
the matrix representing the vector product with rb, linking the origins of the reference frames {b}
and f{a):

frbax]= r. 0 - r., (14)

wiohr r.. ,y h components of rb along the X, Y and Z unit vectors.
the example, when expressing all sub-Jacobians; with respect to the {geo} frame on the MO,
tefollowing transformations apply:

9~J2~d [,~J5tS(zI) ccJ -0 S(Apqs) c-on'S(P) ~SO(77z2Y)gedolid

Table I shows which of pz, i, 17., , and p are zero in a specific case. For example, in case of
a contact between two surfaces the geometric and contact frames coincide: {geo} {con} and
{geo'} = {con'). Hence Eq. (15) simplifies to:

geoj 2 .d~ ... ~ j~n ca. (16)

In case of a contact between a vertex and a surface, A., ity and p may be chosen zero, by making
the geometric and contact frames coincide. Eq. (15) then further reduces to:

j2nd - j2nd c a s: )f o n,

geo -wnoJJ~ige o n~d. *cmq., (7

In case of a contact betwsen two curves Eq. (15) reduces to:

g60Jfl = ggoJo' geSos3  cont Sp) S(P) gCZS0ii.) 9 ds j. (18)

With respect to the basis {a}, P twist at between the MO and the ENV is written as:

where 'r is a column vector representing the (physically dimensionless I) magnitudes of the joint
velocities (or infinitesimal displacements) in the virtual manipulator, due to the "end effector" twist

ain Eq. (13), hence it carries no reference frame subscript.4
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MO/ENV surface curve vertex

surface ?=1x/ y = 0 ??iY = 0 0Ch -/ei = 071, = 7Y = 0 71y = 0 (Choose 17, 7 = P- 0 O)

curve o = 0 0 nt stable/z17 = 71y =0 17y = 0 ntsal

S77, = 77y 0verx (Choosep= =P=0) not stable not stable

Table 1: Frame transformation parameters. The geometric and contact frames are linked by a set
of transformation parameters. This set depends on the type of the contact. For the contact involving
a vertex, the geometric and contact frames may be chosen coincident (p = 0, and p= = = 0
or q = y = 0): the contact frame of the vertex is chosen with its X and Y axes parallel to the
corresponding axes of the contact frame of the other surface with which it is in contact.

Ii ~3.5 POLYHEDRAL oBJEI': EDGES AND FACES

The previous paragraphs describe a contact between two smooth curves and/or surfaces. How-
ever, contacts involving edges (i.e., straight lines) or faces are very common in industrial assembly.
An edge has zero curvature along the curve; a face has zero curvature in all directions. Formally,
the contact models for this type of motion constraint correspond to the limit cases of the smooth
objects: the radii of curvature go to infinity, i.e. the revolute joint moves to infinity, so it becomes
a prismatic joint. For example, Fig. 5 shows a vertex-face contact. The Jacobian expressed in the
contact frame is derived from Eq. (17). Furthermore, . zJ"P is given by Eq. (11); C. TJ is given
by Eq. (12), and go' J"" is derived from Eq. (9) by interchanging the columns and taking the limits
for rQ&, rei - o0. This results in:

0100 0 (20)

0 0 10]00 00
0 0 0 00f " Sliding is now the translational motion of the MO over the face of the ENV, slipping and rotation

correspond to rotation around the contact point, about all three axes of the contact frame.

By taking similar limits, the other special cases of edge-face and face-face contacts result. For ,
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Figure 5: Polyhedral contacts. The MO consists of a vertex (left) or an edge (right); the ENV is
a face. The drawing also gives an expanded view of the virtual manipulator for the vertex-face
contact: the serial connection of a spherical joint (i.e. three intersecting revolutes, "R") and two

prismatic joints ("P") with intersecting axes.
an edge.face contact, Fig. 5: 00

' :0 1 0 0 0 '
°0 0 0 0 0 i

• . c J~z -l - 1 0 0 0 10 0010
cn!w ooooo (21)

The MO has four degrees of freedom in this motion constraint, hence the dimension of the twist
system is four. This is reflected in the Jacobian since the first and fifth columns are dependent.
'Mere is also an ambiguity in selecting the origin of the contact frames: any point along the contact
line will do. Similarly, for a face-face contact:

0 0 0 0 01

Soi 0 0 0 0 (22)
, ° J -l = 1 0 0 0 1

"0 1 0 1 0
0 0 0 0 0

The MO has three degrees of freedom in this motion constraint, hence the dimension of the twist
system is three. This is wiflected in the Jacobian since the first and fifth columns are dependent, as

" '~well as the second and fourth columns. Similarly, there is an ambiguity in selecting the origin of
the contact frames: any point in the contact plane will do.

The procedure presented in Sect. 3.4 also allows the representation of mixed polyhedral/non-
polyhedral contacts. For example, the contact between an edge and a cylinder.

3.6 FIRST ORDER APPROXIMATION OF A POINT CONTACT

&.yEven if the contact surfaces are not polyhedral, it is common practice to work with a first
order, or polyhedral, approximation. For example, the contact in Fig. 3 could be modelled by the
polyhedral model of Fig. 5 (left), if the curvature of the MO is significantly larger than that of the
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First and second order models give the same instantaneous velocities for the MO, i.e. their
Jacobian matrices span the same twist space T. However, compared to the first order model, the
second order model retains more information to interpret the executed motion of the MO, i.e., the
subdivision into slipping, sliding and rotation. Moreover, it predicts the evolution of the contact

* frames during the motion more accurately since it models changes in the direction of the contact
normal, which is impossible in a first order model. Hence, the usefulness of first order models relies
more heavily on the ability of the compliant motion controller to identify on linr. the deviations
between the model and the real world. These deviations are also larger than for second order
models.

3.7 WRENCH SYSTEM

Besides a model of the allowed reciprocal motion, the robot controller has to know what reaction
forces it can expect, i.e. it has to know the wrench system W. For any motion constraint for which
a kinematic model of the motion freedom T exists, a basis for W, i.e. a wrench Jacobian G, can
be found numerically as follows: G is a basis of the vector space reciprocal to the twist system
T. This calculation is similar to the calculation of the orthogonal complement, but with the matrix

A of Eq. (5) as the "orthogonality" matrix instead of the unit matrix. Golub and Van Loan (1989)
contains robust algorithms.

For a general point contact, with a twist Jacobian as in Eq. (8), this results in the following
simple expression with respect to the contact frames:

G= (23)

A 0

For the edge-face and face-face contacts the wrench system has dimension two or three:

0 =,
eue 0ac 0 0 10 ' 0'A

0001 I 0A

With respect to the basis G, every (ideal) contact wrench w is expressed as -

A. w = G r, (25) I

where r is a column vector representing the (physically dimensionless) coordinates of the wrench
w. "

3.8 KINEMATIC MODEL FOR NEAR-CONTACT .

Every compliant motion task starts with an approach move to bring the MO in contact with the "
ENV. The-last part of this approach (i.e. the so-called near-contact phase) must take place under
force control, and hence is also a compliant motion. The virtual manipulator linking the MO to -

the ENVin the general point contact model of Fig. 3 is extended with the APP virtual manipulator, !' ,
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consisting of a prismatic joint along the common normal. The contact frames on MO and ENV
keep the same definition as in the case of real contact, but their origins are now chosen at the
intersections of the common normal with the surfaces of MO and ENV. Accordingly, the Jacobian: jd is extended with one column:

j2nd,nc wh j2nd japp. (26)

With respect to the {con} frame, Jo1P is as follows:

0
0

i 0eo J o \I

0

Any twist t of the MO with respect to the ENV is now decomposed into slipping, rotation, sliding,

and approach along the common normal:
t + t trot + tslid + t ap p . (28)

3.9 EVOLUTION OF THE CONTACT FRAME LOCATION: KINEMATIC DESCRIPTION

A good model not only describes the instantaneous reciprocal motion freedom of the MO, but
also indicates how this motion freedom evolves due to the motion itself. Slipping and sliding move
the point of contact over both the MO and the ENV, so the location of the contact normal and
the tangent vectors change. Hence, the locations of the {geo}, fcon}, fcon'} and {geo'} reference
frames change with respect to: 1) the base frames fbase} and f base'}, and 2) some reference frames
{ref } and {ref'}, which are chosen (arbitrarily, but fixed once and for all) on the MO and the ENV,
respectively. This Section shows how to derive, from the motion of the virtual manipulators, the
evolution of the contact and geometric frames with respect to the fixed reference frames {re f} and
{ref'}. To this end, the concept of the evolution transformations EVOL and EVOL' is introduced,
see Fig. 6. These transformations complement the previously presented kinematic model of the
instantaneous motion freedom as follows:

I. EVOL contains the current transformation between {re f} and the {base} of the virtual SLIP~manipulator.

2. EVOL' contains the current transformation between {ref} and the {base'} of the virtual
SLID manipulator.

t Updating EVOL and EVOL' brings the virtual manipulators SLIP and SLID, which are used for the
instantaneous motion specification, back to their "zero positions": whenever the specified desired .K
"joint velocities" of SLP and SLID have moved the joints of these virtual manipulators over a small
angle (and hence the MO over some infinitesimal distance with respect to the ENV), this motion is
incorporatedintotheEVOLandEVOL'transformaions. ThismeansthatthebaseframesofSLIP, . ~ ~and SLID are moved, in the same way as the contact frames. "

The following list of the topology of the kinematic chains linking { ref } to the contact frames,
(see also Fig. 4), is used to determine which components of the executed motion are needed to

413I. -

• 
¢ , 

7.1



fr---

update the evolution transformations. I is the identity transformation. (At the side of the ENV, the
list is completed symmetrically.)

SLIP ROT
EVOL, ,RR, "I{o R

Smooth surface: {re} f basel --- geo) conj {con'}... (29)
SLIP ROT

EVOL RSmooth curve: {ref} -..+ {base} _ {geo} -'{con} A {con'}... (30)
SLIP ROT

EVOL I R R~n CV .
Straight line: {ref} -L {bae) ,P* {eo (31)

SLIP ROT

VerVex Rrf bae tR I R
Vertex1 : {ref} .O {base} .- ,--*{geo} _I {con} - {con'" (32)

Virtual
SUP ROT APP SUD contact

manipulators

[basel Icon) [con'"bs'

[ ' i ref} rtef7} Known

Robot ransfrmations

Figure 6: Evolution transformations. The boxed circles represent virtual manipulators, used to
describe instantaneous motion freedom; the ellipses represent known transformations between
reference frames. EVOL and EVOL' describe the actual locations of the base frames of SLIP and
SLID, with respect to the known reference frames {ref} and fref'}.

3.9.1 Evolution of the Contact Frames In order to update the location of the contact frames,
the base frames are chosen coincident with the contact frames in the "zero position" of the virtual
manipulators. (Remember that the choice of {base} and {base'} is arbitrarilyl) Eqs. (29)-(32)
then show that, in order for {base} to track the motion of {con}, the evolution transformation
EVOL should be updated by the motion of the SLIP manipulator. Similary in order for {base'} to
track {con'}, the evolution transformation EVOL' should be updated by the motion of the SLID
manipulator.

3.9.2 Evolution of the Geometric Frames Updating the location of the geometric frames pro- 4
ceeds along the same lines. The base frames are now chosen coincident with the geometric frames in

t " ~~~the "zero position" of the virtual manipulators. Again, FEqs. (29) -(32) determine how the evolution , ;

transformations should be updated in order for the base frames to track the motion of the geometric
frames : for smooth surfaces or vertices, there is no difference with the evolution of the contact
frames, while for curves and edges only the first joint in the virtual manipulators (SLP and SLID)
is needed.

'If he geometic frame is chosen to coincide with the contact frame!
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3.9.3 Validity Range of Kinematic Model Clearly, if the relative location of the contact frames
{con} and {con'} with respect to the reference frames on the MO and the ENV changes over an
extenaed range, the second order approximation of the surfaces may not remain valid. This is
because, for arbitrarily curved surfaces, the principal directions and the corresponding curvatures
vary with the location of the contact point on the surface. Hence, besides continuously updating
the evolution transformations EVOL and EVOL', also the kinematic construction of the virtual
manipulator, (i.e., its link lengths and the orientation of its joints in space), has to be adapted in asecond, less frequently applied update step.

3.10 EVOLUTION OF THE CONTACT FRAME LOCATION: MATHEMATICAL REPRESENTATION

3.10.1 Evolution ofthe Contact Frames Numerically, the evolution of the contact frames {con}
and {con' } is expressed by the twists te and t,:

t, = Be , t'.= ' (33) |
i ':where E and B' are the evolution Jacobians. From the previous sections, it is clear that these:

evolution Jacobians correspond to the SLIP and SID Jacobians, respectively. So, these are subma-
trices of Jd,"', with proper sign. f and e' are the corresponding subvectors of . is determined
by Eq. (19), with J2nd replaced by J 2 '" in case of near-contact.

Alternatively, one can be interested in knowing the evolution of {con} with respect to {ref,
or (con }with respect to {re f}. Again, Eqs. (29)-(32) determine which columns from J2ndc one
needs. Table 2 lists the evolution Jacobians E and E' for these cases.

te and t, are used to update the transformations EVOL and EVOL'. Mathematically, at a given
time instant t, EVOL and EVOL' are characterized by the screw transformation matrices cllnS(t) and
",,S(t), between, on the one hand, the contact frames {con} and {con'} and, on the other hand,
their respective reference frames {re f} and {ref'}. After some infinitesimal time interval At,
the contact frames have moved with respect to their respective reference frames over infinitesimal
displacements t4 , and teA:

= teAt, teA te At. (34)

Hence, the evolution transformations have to be updated as:
)S(t + At) =,7S(t) S(t,,), cS(t + At) = conS(t)S(t,ref,( sefre ' . ), (35)

where S(tea) and 5(t,) are screw transformation matrices corresponding to the infinitesimal
displacements te,& and t,,A (expressed in {con} and {con'}, respectively): if tA has Cartesian
components (6 b . d. ! dd)T, then S(tj) is easily derived from Eqs. (13) and (14) as:

-6-. 6Y 0 0 0-
I -6 0 0 0 A,(t)= -6 1 0 0 00 -dt 1 _61 6, (36)

d z 0 -d 6 z 1 -6z AI
-dy 4 0 -6y 6 1

In a second update step, the evolution Jacobians E and E' in Eq. (33) have to be adapted contin-
uously, because, as explained in the previous subsection. the curvatures in the contact point maychange, and hence also the corresponding columns of the Jacobians J, E and E'.
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I. (evolution of {con}) (evolution of {,-on'})

w.r.t. {re f} I il _ J rot j-p 
"

w.r.t. {ref'} [j lid Jot JO PP] Jlid

Table 2: Evolution Jacobians. The modelled evolution of the contact frames.

3.10.2 Evolution of the Geometric Frames Again, for smooth surfaces or vertices there is no
difference with the evolution of the contact frames, while for curves and edges only one column,
corresponding the first joint in the SLP or SUD manipulator, is needed in the evolution Jacobians
of eq. (33).

3.11 KINEMATIC MODEL FOR MULTIPLE CONTACTS

In case several contacts exist between the MO and the ENV, as in Fig. 2, a virtual manipulator
is used to describe every individual contact. This results in a complex kinematic chain connecting
the MO and the ENV. The corresponding twist and wrench systems for the MO are calculated
with the composition roles given in Section 2, i.e. the resulting twist system is the intersection of
the individual twist systems, and the resulting wrench system is the sum of the individual wrench
systems.

Figure 2 shows an example in which the MO is constrained by two elementary constraints, a
vertex-face and aface-face contact. The twist Jacobian for the vertex.face contact, expressed in its
own contact frame, is given by Eq. (20), and, similarly, the twist Jacobian for the plane contact,
expressed in its own contact frame, is given by three independent columns of Eq. (22). The total
twist Jacobian, expressed for example in {conl }, is given by:

1 0
0 0

nlJ (37)

0 10 0

3.12 KINEMATIC MODEL FOR COOPERATING ROBOTS

The extension of the kinematic model to multiple cooperating robots is straightforward. For
example, for two robots with contact between their manipulated objects, the role of the ENV is

played by the manipulated object of the other robot, and the twist t is now really a relative twist

between the two manipulated objects, i.e., different from the absolute twists of both manipulated
objects.

,,
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Figure 7: Peg-in-hole: insertion snapshots, from badly to almost perfectly aligned configurations.

4 Example: Alignment of Cylindrical Peg and Hole

This Section applies the presented kinematic approach to the peg-in-hole example. It describes
the desired alignment motion between the axes of peg and hole starting from the initial position
depicted in Fig. 1. This position is mostly not considered in literature, since the alignment between
the peg and the hole is too bad to start the final insertion phase. Nevertheless, if the position of
the hole is not exactly known, and hence the manipulator has to "look for it" by (stochastically or
deterministically) moving the peg around in the neighbourhood of the current contact point, this is
probably the most interesting relative position between the peg and the surface containing the hole:

* i indeed, the passive compliance in the system helps the peg to "fall" into the hole once its bottom I
has crossed the rim of the hole. In other words, the relative position between peg and hole, shown
in Fig. 1, corresponds to avery stable position, that can be used to start afirher algment motion
before proceeding tothe final insertion.

The next subsections show that an explicit kinematic model of the contact situation between
peg and hole is very appropriate to derive the nominal alignment motion for the peg, given the time
varying nature of the peg's motion freedom. Hence, it offers a user friendly interface for the motion
specification.h 4.1 MOTION CONSTRAINTS

The configuration of Fig. I contains three point contacts: one on the peg's surface, and two on t
the peg's bottom rim. Hereafter, these contacts are named Surf Rim] and Rim2, respectively. Each
of these point contacts removes one degree of freedom. Borrowing the terminology from Sect. 3.3,
which was actually defined for a single elementary contact, the three remaining degrees of freedom
could be termed as:

Slip. A pure rotation of the peg about its own axis does not move the position of the contact points
in space, but it changes the contact areas on the peg's surface and bottom rim.

Slide. A pure rotation of the peg about the axis of the hole moves the contact points in space, but .
leaves them invariant with respect to the peg. $

Insert. The proper combination of 1) a rotation about an axis through Surf, tangent to the hole's
rim, and 2) a taslation along the line through this contact point, parallel to the axis of the
hole, aignt s of the peg better with the axis of the hole. At the same time, the Surf

: ~contact moves closer towards the peg's bottom, while the R/M contacts move towards the . ,

Surf contact point.

This description of the peg's motion freedom is at the same time intuitive, as well as compatible
with the kinematic model of the constraint, as discussed in the next subsection.
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4.2 NOMINAL KINEMATIC MODEL

ofEach of the point contacts Surf Riml and Rim2 has five degrees of freedom. The discussion
of Section 3 suggests the following set of virtual manipulators, consisting of only prismatic and
revolute joints, and linking the peg to the hole with the same motion freedom as the contacts: 3 3

SURF. This virtual manipulator describes the reciprocal motion freedom of the peg w.r.t. the hole
as allowed by the Surf contact, see Fig. 8. It consists of the following sub-manipulators:

SURF-SLIP: one cylindrical joint, i.e., a revolute and a prismatic joint with their axes
: coinciding with the peg's axis. ,

SURF-ROT: a revolute joint in the Surfcontact, point, with its axis along the contact normal.

SURF-SLID: two revolute joints, one at the Surf contact point (with its axis along the tangent
to the hole's rim), and one along the hole's axis.

RIM). This virtual manipulator describes the reciprocal motion freedom given to the peg by the
first RIM contact point. see Fig. 9. It consists of the following sub-manipulators:

RIMI-SLIP: one revolute joint on the peg's axis, and a second revolute joint, tangent to the
peg's bottom rim, and with its cente in the RimI contact point.

RIMI-ROT: a revolute joint in the Rim) contact point and with its axis along the contact
normal.

RIMI-SLID: two revolute joints, one at the Rim) contact point (with its axis along the
tangent to the hole's rim), and one along 'le hole's axis.

RIM2. Completely similar to RIMI, but now at the Rim2 contact point.

The three virtual manipulators form three parallel paths in the graph describing the topology of
the motion constraint, see Fig. 10. Hence, the instantaneous motion freedom of the peg w.r.t. the
hole is given by the intersection of the twist spaces corresponding to each of the virtual manipulators.
A topological mobility analysis according to the Chebyshev-Grfibler-Kutzbach formula. Angeles
(1988), results in:

1. Number ofdegrees of freedom constrained in each joint: d = 5.

2. Number of one-degree-of-freedomjoints: j = 15.

3. Number of bodies (three chains of four bodies, plus MO and ENV): n = 3 x 4 + 2 = 14.

4. Number of degrees of feedom = 6 x (n - 1) - j x d = 3.

This analysis breaks down at two singular configurations: the first one coincides with the desired
end position (i.e., axes of peg and hole are parallel); the second one is the limit case of all possible
initial configurations (i.e., axes of peg and hole are perpendicular), The three previously introduced
degrees of freedom (Slip. Slide and Insert) allowed by the three point contacts correspond to three
independent drivers for the complex kinematic chain formed by SURF, RIM) and NM2: this means

"_, that if a motion is specified as a combination of Slip, Slide and Insert, the motion of all joints in
the chain is uniquely defined.

In principle, the topology and the link lengths and link angles of the virtual manipulators remain
unchanged during the complete alignment motion, since the geometry of both objects is perfectly

*. described by a second order model. The definition of RIM) and RIM2 uses three revolute joints at
f the contact points which have their axes aligned with some geometric features (tangents, normals)
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revoluteJoint alng co t
noma (SUR-O)'

revolutejoin alng
tangent to rin

SURF-SLID
revol we joint along

Figure 8: Peg-in-hole: virtual SURF manipuatior The depicted kinematic chain describes the
reciprocal motion freedom of the peg wxrt the hole as allowed by heSurfpntctatbwen1
the surface of the peg and the rim of the hole. T1he cylindrical joint forms the SUIP part of the SURF

mnplator At the contact point. there are two revolute joints: one has its axis along the contact
normal (SURF-ROJ), the other belongs to SURF-SLID (together with the revolute joint along the

centerline of the hole) and has its axis along the rim's tangent.
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Figure 10: PeQ.in.ho/e: topology of the virtual manipulators SURF RIMI and RIM2, see alsoFigs. 6, 8 and 9. The prismatic joints (P) and the revolute joints (R) are numbered as follows : the
first index represents the point contact: S for SURF, I for RIMI and 2 for RM 2; the second indexcorresponds to the joint number within each virtual contact manipulator 1-5.

of the peg and the hole. However, these joint angles are not important to describe the motionfreedom of the peg in an unambiguous and user friendly way. Hence, they can be replaced by onespherical joint for the purpose of motion specification. However, for modelling the evolution of thecontact locations, the more detailed model with three revolute joints has to be retained (see nextsubsection).

4.3 MATHEMATICAL DESCR"PTON

A mathematial description of the instantaneous motion constraints acting on the MO, is neededto feed the robot controller with numerical data to execute the manipulation task. First, a numericalmodel of the instantneous motion freedom has to be built (i.e., the twist and wrench Jacobians Jand G). Second, one has to choose from the available motion freedom the desired motion to beexecuted by the robot. And third, during the motion the robot controller checks whether the motionconstraint n',je!s are still correct and if not, it updates them (this is called idenificaton of themodel uncertainties).
This paper is only concerned about a world with limited uncertainties: this means that theinaccuracies of the models are too large to allow a direct alignment of the peg and the hole underpure position control, yet they are small enough so that the available passive compliance in thesystem is able to take up the possible small mismatches between model and reality. This is notan unrealistic assumption, since the insertion tolerance between thf diameters of peg and hole isusually some order of magnitude smaller than the positioning accuracy of the robot. (Moreover, theauthors have developed tools to identify the uncertainties during the motion, based on the nominal

models (the sam., as the ones used in this text) on the one hand, and the measured monons and
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forces on the other hand, Bruyninckx, De Schutter and Dutrt (1993).)
So, the following initial situation is assumed: the position of the three contact points Surf

Rim) and Rim2 is approximately known. The derivation of the mathematical model proceeds as
follows. From the known geometry of peg and the hole (radius = 10 mm; length = 25 mm) and their
nominal relative position (angle between both axes, in this example 0 = 0.5677 rad), the position and
orientation of the geometric frames {geopjum I and {geopjM2} and the contact frame {conSURF}
(coinciding with {geosuRp} are deduced with respect to a reference frame attached to the robot's
end effector. This frame is located at the top of the pen with the axes parallel to the axes of the
geometric frame {geosup } 2 :

1 0 0 0 0 0
0 1 0 0 0 0tSlS =  0 0 1 0 0 0

ref 0 10 -19.1657 1 0 0
-10 0 0 0 1 0

S19.1657 0 0 0 0 1 '

0.0851 0 0 3 0.996 0 0 00 0 0 0 0 0

"goRIM S = -0.""6 0 0.0851 0 0 0r

ref 24.9093 0.8509 -2.1273 0.0851 0 0.9964
-1w s t e 1 g f m

L! 2.1273 -9.9637 249093 -0.9964 0 0.0851,

0.0851 0 -09964 0 0 0
0 1 0 0 0 0

CoRM2S _ 0.9964 P0 0.0851 0 0 0
ref - -24.9093 0.85CI -2.1273 0.0851 0 -0.9964

-10 0 0 0 1 0S2.1273 9.9637 -24.9093 0.9964 0 0.0851

, Following the procedure described in section 3.4 the twist Jacobians of each contact are expressed

with respect to each contact- or geometric frame. From eq. (16):

9oRsxIjM = fJs1 ...Jss]

-L soar •s oaIIA P --nUR / CORPsuaRIS( -0,567-7 eor),j

heo .9( = 0)r oo o -SUR

/0  1 0 -0.8432 0/
/° 0 1 -0.5377 o/
0I -10 0 10 o0 "
1 0 0 0 0 l

LO 0 0 0 o0 t '
From eq. (18) : -

geoRIMI 
n  
d [j lI... j l5]

2This position analysis is performed by modelling the virtual manipulators using L ,€ Aplihed Motionr softwar'e.
The -v 3lues of 17. .14. and p are derived from this analysis. .
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rMSl p = 01..920 ) gen:
Co- RM S(A. -.. 2838)8)o'tM =0 jsidl

3 -=02838) ,,jS(P - 0.5920) 91 ,R1M1 S(7 0.2838) geo',

0 1 0 -0.8298 0.5357
1 0 -0.2800 -0.5357 -0.8432
0 0 -0.9600 0.1563 -0.0458

- 10 0 0 0 8.2980
0 0 0 0 5.3573
0 0 0 0 -1.5628 oi

and: ,,,j2nd =J21 ... J251

TsS -RIMS(MA = 0.2838) cO0nhRIM2J'
IgeOIRIM POUM -'tI2

0.2838' '"...'S(, = -0.5920) 'tM2S(i. = 0.2838).., J 1  ;PORIM2 C'I M n M2 C tiM2 " "" " I 2 '

0 1 0 -0.8298 -0.5357
1 0 -0.280( 0.5357 -0.8432
0 0 -0.9600 -0.1563 -0.0458

= -0 0 0 0 8.2980
0 0 0 0 -5.3573
0 0 0 0 1.5628

Te columns of the Jacobians are numbered according to the corresponding joints in the
topological diagram of figure 10. After the transformation to the end effector reference frame, the
intersection of these Jacobians is calculated numerically (Golub and Van Loan, 1989). However,
since at any time during the motion, the SUp and Slide components of this intersection are directly
deduced from the nominal geometric model, only the Insert component has to be calculated

* }numerically. So, one ends up with a 6 x 3 matrix, in which each column describes one of the three
degrees ot freedom:

0 0 0.0521I 0.8432 0
j Slip jSlid jlnert 0 0.5377 0 (38)
L0 -11.8734 00 0 0.0443

i ir of t.99copne

The specification of the desired motion is then very simple: multiply each column with a scalarSli" li, ,fn er) indicating the dei d magnitud e te corresponding m to component,

and add these three twists together

e Jde = [jSlIp jSlld jInsert Sid 39

"nzeit I
The EVOL transformations describing the current relative positions of peg and hole are easily

: updated on the basis of tie measured joint motions in the three virtual manipulators SURF, RIMIand RIM2, see Eqs.(34) and (35). This is done using the evolution Jacobians:

E-nSURF = [ Js1 Js2 ], EqeoR! M 1 1  , EgeoJ I 2  [ EJ 21 ]
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.7ote that in this case the update procedure remains valid even for finite relative displacements
betwee., peg and hole (which maintain the three point contacts), because the virtual contact ma-
nipulators remain identical. Or the surfaces of both objects are exactly descnbed by second order
models.

5 Conclusion

This paper shows how to model contacts between rigid objects using virtual manipulators, or I.

kinematic chains, which have the same relative degrees of freedom as the contacting objects in
the respective contact points. The kinematic composition of these virtual manipulators is derived
from the first and second order geometry of the contacting surfaces in the neighbourhood of the
respective contacts. Kinematic analogues based on the first order geometry (i.e. position of the
contact point and orientation of the tangent plane) suffice to describe the instantaneous relative
degrees of freedom between the contacting objects, but fail to model the relative motion accurately
when the contact point moves over the contacting surfaces. On the other hand, kinematic analogues.
based on the second order geometry (i.e. first order geometry plus curvature information) remain
accurate for a larger relative displacement between the objects.

It is shown how these kinematic analogues allow the use of well established tools in kinematics
to specify the desired motion, and to analyse the resulting evolution of the contact locations. This
approach is illustrated by means of the weil known peg-in-hole assembly problem in case of a large
initial misalignment.

In force controlled manipulation tasks, also called compliant motion, the compatibility of the
specified motion with the constraints imposed by the environment onto the manipulated object,
determines the quality of the task execution, both in case of passive and active force control. So,
this paper rovides important new tools to improve the specification, and hence the execution, of
force controlled robotic manipulation tasks.
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MULTIBODY DYNAMICS IN IMPACT AND CRASHWORTHINESS

'I 0 JORGE A. C. AMBROSIO and MANUEL SEABRA PEREIRA
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Technical University of Lisbon
1096 Lisboa, Portugal

ABSTRACT. Formulations based on multibody dynamics for the analysis of crashworthiness
and impact of vehicles and structural systems are reviewed in this paper. A methodology to
incorporate the elastodynamics effects, suitable to describe the elastic deformations of
flexible bodies, is discussed. The limitations of this methodology for crash impact are

*overcome in a more general formulation where the deformation of the flexible (or partially
flexible) bodies is described using an updated Lagrangian formulation. This allows for
geometric and material nonlinear behavior of the multibody components. A major drawback

* of this nonlinear formulation is the inability to describe zones of concentrated deformation
due to local instabilities. For this purpose the plastic hinge concept, where the structural
plastic deformation is modelled by nonlinear joint-spring set-up, is used. The validity of this
model is assessed by carrying out an experimental test where a hollow steel extruded beam
collide with a rigid block. By predicting where and when failure is likely to occur using a
flexible model, the present technique provides an efficient tool to access the crashworthiness
design of a broad class of impact excited structural configurations with general kinematic
constraints. Finally these methodologies are applied to model the rollover of . truck in order
to illustrate their capabilities.

1. Introduction

During the last twenty five years computer aided analysis of crashworthiness and structural
impact has received a large attention and is now emerging as a powerful methodology which
can be successfully applied in practical and industrial situations. in this paper, multibody
dynamics based methodologies, applicable to crashworthiness and impact, are reviewed andi ~discussed.SSeveral approaches using experiments [1-4] and/or numerical simulations have been

adopted in the ast. Different numerical formulations with varying degree of complexity and
accuracy have =n proposed using spring-mass models [5-91, finite difference methods [ 10- j
12], and finite element methodologies [13-16]. Hybrid approaches [5,17,18] utilizing data
obtained from quasi-static crushing of different segments of the colliding structure have also
been developed. In these methods the generalized non-linear load-displacement
characteristics are kinematically coupled to the global structural system to obtain the overall
dynamic response of the structure.

In some cases the experimental load-deformation characteristics can be adjusted to take
into consideration strain rate effects (19]. The access to such experimental data allows an
insight to complex phenomena such as wrinkling, friction and failure of different connection
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elements which are, in many occasions difficult, if not impossible, to obtain in general

purpose nonlinear finite element computer codes.
In standard finite element formulations the large displacements and deformations of the

gross motion are not generally takeni into consideration. However recent efforts in the field of
nonlinear structural dynamics have contributed for the development of well known
commercially available codes such as PAM-CRASH [201, DYNA-3D (21], DYCAST [131
and WHAMS-3D [22]. These programs are now able to simulate with improved accuracy
several different structural impact phenomena such as large localized deformations, structural
instabilities, transient vibrations, stress wave propagations and eventually structural collapse
due to material damage and loads causing stresses above the ultmate strength. These codes,
however, require large computer resources and normally involve time consuming modelling
data preparation which make them rather unsuitable as a design tool during the initial design
stages.

In crashworthiness and impact analysis of structural mechanical systems, the elasto-
dynamic effects play an important role on the system behavior. During the impact period the
deformation of the omponents interfere with the motion of the system which results in a
strong coupling between the structural flexibilities and the gross motion of the different
components. For this purpose several researchers have suggested procedures that
successfully introduce the elasto-dynamic effects into multibody dynamic formulations (23-
25]. However, there are some unsolved difficulties related with the complexity of the
models obtained

The problems associated with the introduction of flexibility effects in a multibody
system are related with the complex geometries of the flexible bodies and it is not always
obvious how to develop proper and judicious simplified truss type models to adequately
represent integrated beam and sheet metal strucuaal components. Basically this area deals
with the understanding ofthe failure and collapse mechanisms based on experimental results
which makes possible to tune accurate and cost effective simplified analytical techniques.

In many impact situations, the individual structural members are overloaded principallyin bending giVing rise to plastic deformations in highly localized regions, called plastic

hinges. These hinges occur at points of maximum bending moments, at load application
points, at joints and in locally weak areas. If the levels of plastic deformation are large, a
plastic hinge allows relative rotation between the parts of the structure and it becomes
reasonable to model these phenomena within the framework of rigid-flexible body dynamics
formulations. For complex cross sections and joints the piastic behavior is more complex
involving local buckling and eventually fracture which can only be accurately predicted by
simple and cheap tests on localized parts of the structure [261.

In this paper a multibody dynamic formulation for systems with linear and nonlinear
structural deformations is reviewed and the plastic-hinge modelling approach as applied to a
rigid-flexible multibody system is presented. These flexibility effects, which may be
important during the impact period, can be taken in consideration with the present
formulation. The example of a rotating beam is presented to illustrate the effect of geomei c
nonlinear deformations on the system components. A colliding beam example is analyzed
and a corresponding experimental test is carried out to assess the validity of the proposed
formulation. Finally, these methodologies are applied to the rollover and crashworthiness of
an utility truck.
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2. Multibody Dynamics Using Joint Coordinates

A multibody system is a collection of rigid and flexible bodies joined together by kinematic
joints and force elements as depicted in Figure 1. For the Ph body in the system qi denotes a
vector of coordinates which contains the Cartesian translational coordinates ri, a set of
rotational coordinates pi, and a set of nodal coordinates q', u' or 8' (if body i is flexible). A
vector of velocities for a rigid body i is defined as vi, which contains a 3-vector of
translational velocities i and a 3-vector of angular velocities ow (defined in the XYZ
coordinate system). If body i is flexible then the vector of velocities vi contains t, , oi
(defined in the 4q]i coordinate system) and a vector of nodal velocities 4' or 8'. The vector
of accelerations for the body is denoted by *'1 and it is simply the dme deivaive of v,. For
a multibody system containing nb bodies, the vectors of coordinates, velocities, and
accelerations are q, v and it which contain the elements of qi, vi and i', respectively, for
i=l, ...,nb.

Fiur1 Spheic al

the kinematic oint jobetwerdboisbderbdbym inpnet

, Body

Let +2 +.

i ' Revolute

constsintsna

! irner Bod Body

3+

' "?Body Spring forme ,

~Exteral•
i Figure I Schematic representation of a multibody system

Let the kinematic joints between rigid bodies be described by mr independent
l constraints as

The first and second derivativs of the constraints yield the kinematic velocity and
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> *Dv =0 (2)

cEubv+Dv=0 (3)

where D is the Jacobian matrix of the constraints. The equation of motion for the system of
rigid bodies are written (see reference (271)

M,-DTA=g (4)

where M is the inertia matrix, X is a vector of Lagrange multipliers, and g = g(q,v) contains
the forces and moments that act on the bodies, and the gyroscopic terms.

The constrained equations of motion expressed by equations (1) to (4) can be converted
to a smaller set of equations in terms of a set of coordinates known as joint coordinates.

*Such transformation is briefly discussed here (for more details refer to reference [271). The
relative configurations of two adjacent bodies are described by a set of relative coordinates,
equal to the number of relative degrees of freedom between the bodies. The vector of joint

coordinates for a system of rigid bodies is denoted by P and it contains all the joint
coordinates and the absolute coordinates of the floating base bodies. The vector of joint

velocities, defined as 0, is the time derivative of P, being its relation with v is given by (27].

v=B (5)

where matrix B is the velocity transformation matrix and can be shown to be orthogonal to
the Jacobian matrix D. The transformation of the accelerations is obtained by deriving
equation (5) with re.pect to time. This is written as

Substituting equation (6) into equation (4), premultiplying by BT, and using the
orthogonality condition between B and D yield

M iJ = /(7)

where

M=BTMB (8)

f=BT(gM4A) (9)

Equation (7) represents the generalized equation of motion for an open-loop system of rigid
bodies. This equation, containing the minimum number of second-order differential ,t
equations, can be used instead of the mixed set of differential-algebraic equations given by S

equations (I) through (4). In reference [28] the equations of motion of a system containing
closed kinematic loops are presented and discussed.
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3. Flexible Multibody Dynamics

For the crashworthiness and inpactanalysis, using a multibody formalism, the description of
the flexibility of its components may be necessary. The behavior of systems subjected to

Ii impact is characterized by zones of large deformations and by zones where only elastic
deformations take place. For the purpose of describing this behavior, linear and nonlinear
formulations of multibody systems are reviewed in this section.

9 3.1. LINEAR DEFORMATIONS
It has been shown (25,291 that the configuration of a deformable body in a multibody system

can be described by a set of global reference coordinates qri and local elastic coordinates ui

which are defined using the finite element methodology. As shown in figure 2, the position
of a flexible body in the non-moving reference frame XYZ is specified by the spatial location
ri of a body fixed frame 4il and a set of angular orientation coordinates thus the
coordinates describing the gross motion of the body a m T = riTeT].

Elementj

7 ,j

7 ''

I _

Figure 2. Reference generalized coordinates

Let q' = [ qriT, uiTIT be the vector of generalized coordinates of body i. Assuming all
coordinates to be independent, the Lagrange equations of motion for this flexible body can be
written in the form

t :  (10)
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Using the finite element method to describe the flexibility of body i, the kinetic energy 7' is a

function of 1' and qi, and the elastic energy Ui is function of qi. The equations of motion
(10) for body i take the form [24,25,29,30]

t ! ~ ~~~~~M(q') 41 + K ' q' = g9 lq~)+Si iq ) (1

where M i, Ki are the mass and stiffness matrices of body i, respectively, i is the vector of
generalized forces of body i, si is a vector containing velocity quadratic terms and other
accelcaton independent terms. In a less compact form, equation (11) is written as:

- so

!' +/ Me 0i' 0 0 KJ~u' Lg I s, '

In this equation the submatices Mr M Mr and M associated with the gross motion
gesof the body-fixed coordinate fram, A ffnothe standard finite element mass maix, arei tim invariant. Assuming small linear elastic deformations for the flexible body, the stiffness

: ! matrix K is also constant. The remaining term of the mass matrix are time variant and must ;
be calculated every time step. The mean axis conditions can be applied to equation (12)

~~resulting in a constant mass matrix where the inertia coupling between rigid and flexible
! ;' 1degrees of freedom disapears [29,30]. Another methodology to transform the mass matrix

Mi into a diagonal constant matrx is discussed in the next section.
'! i 3.2. EQUATIONS OF M0TION FOR CONSTRAINED FLEXIBLE BODY i,

4' Consider now a mechanical system with nb bodies connected by joints which are described
by m holonomic constraints in the form

4O(q,t) = 0 (13)

where 0(q,t) = [41 (q,t)T ...... Om(q,t)T]T. These equations express the dependency
between the generalized cartesian coordinates q.

Consider, for example, two bodies i and j connected through a revolute joint in a
common point k. as illustrated in figure 3. The vectorial equation which forces point k to be
coincident in both bodies at all times is written in the form

r+ Ab' - r - Ajb'j = 0 (14)

where b'i , bi are position vectors of point k in bodies i and j respectively; Ai, Ai are
transformation matrices from the body coordinate systems to the global inertia frame.

This joint has two algebraic constraint equations. If both bodies are flexible b'i,
depend on the generalized elastic coordinates, implying that these vectors have to be
calculated at each time for the current deformation state. Then

° r' + A'(bo" + r)- r- Aj(b'J +,5,)-- 0 (15)
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where b'oi, b'o' correspond to the position vectors of point k in the undeformable state, 8k9

8kJ are the flexible displacements of the connection node (point k) of bodies i and j,
respectively.

4b

J

. t

tr

Figure 3. Revolute Joint
The holonomic kincmatic constraints are introduced in the variational form of the

equations of motion of body i using Lagrange multipliers. After substituting all energy
expressions in these equations, the dynamic equations of motion for a flexible body are
written in a compact form as:

MI(qR) .+]Dr=gi(,,t)+s'(4,q')-K' q' (16)

where D = (okD/dq') is the Jacobian matrix for the constraints.
Once these equations have been obtained for each body, it is necessary to assemble the

equations for all bodies of the mechanical system. For the equations obtained, the angular
acceleration of the body fixed coordinate frame must be transformed to global components

i ., such that the accelerations in equation (11) are consistent with the rigid body accelerations
u sed in the transformations of the joint coordinate method, expressed by equations (5). The
constraint equations and their corresponding Lagrange multipliers can be eliminated from the
equations of motion by using velocity transformations. The interested reader is directed to
references [31,32] for a more detailed discussion on the use of the joint co-ordinate method
with flexible bodies.

3.3. GEOMETRIC AND MATERIAL NONLINEAR DEFORMATIONS

The description of the deformation of the flexible body i presented before is not suitable, by
itself, to applicatio-ns where the nonlinear deformations play a major role in the dynamics of
the multibody system. This is the case of applications involving the impact and
crashworthiness of vehicles. In order to overcome these limitations, a more general
formulation of a flexible body was proposed by Ambr6sio and Nikr,,vesh [33]. In this
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methodology an updated Lagrangian formulation is used to describe the kinetics of the
flexible body. Moreover, the finite element method is used to represent the flexible body.

The kinetic energy, deformation energy and external forces are calculated using thet updated Lagrangian formulation. Using equation (10) for each finite element and assembling
! their contrbutions leads to the flexible body equations of motion written as:

[M M'# Mf 0 0 0 0
[M Moo Mo go 0 -0 0 0 0 (17)

t his Mfo MffJiL][J[L F 0 0 !KL+,K L u' (17

In this equations the left superscripts are referred to the configuration in which an event
occurs while a left subscripts refer the configuration in which the event is measured. The
configurations in which an event can occur or be measured are: the current configuration; the
last known equilibrium configuration; and the initial configuration, respectively denoted by

! t+At, t and 0. For instance, vector T', denotes the nodal forces equivalent to the actual state
of stress tha- occur in the reference configuration r and are measured in a corotated

configuration r" Vector u' denotes the increments of displacements from the updated
configuration to the current configuration due to the incremental nanre of this formulation.

In equation (17) the mass matrix is equal to the mass matrix calculated for equation
(12), the right-hand side is composed by a vector of externally applic generalized forces, a
vector of gyroscopic forces, and internal forces due to the deformation of the flexible body.
The vector of the external applied generalized forces is evaluated over the updated
configuration and it is written as:

f ft+f~t. "da+Jf op t'+&fb "dv
"A V

whee f fi t 'At 1n sfati a + f p ot'A h bd " fdv  (18) thi i, 
A  V '

N 1A & fs t'da + T Tprm 1+&'. "dv
t'A f NAVf

where A is the transformation matrix from the body fixed coordinate system to the inertal

frame, N is the matrix of shape functions, '+',"b and '+ 'f, are the body and surface forces
respectively. The vector of gyroscopic forces is written as:

m '' j °P' dv" A ' r °pN °dv]

V '

A&& f °p 'P b' °dv + 2 f °p' N °dv
v vI

s f'PN '& '@ ', °dv +2 fOpN '(D'N °dv[ 6' (19

IVI
Le v J Lev
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In equation (17) matrices .,KL and ,K are respectively the linear and nonlinear
stiffness matrices, and ,F denotes the vector of equivalent nodal forces due to the actual
state of stress. These quantities are given by:

AlBX =f B T.C .BL "dv (20)

* rv
.KL =j ,'B .d (21)

t' N'-- t't N ''1

In these equations L and ,B denote the linear and nonlinear strain matrices, t

iI ;. respectively, and 1,' is the Cauchy stress tensor for the updated configuration. It should be

noted that the reference to the linearity of the stiffness matrices 1'K. and ,Ke.. is related to
their relation with the displacements. If the constitutive tensor ,.C is not constant then both

X L and KN. are not linear.
A multibody system may experience elasto-plastic deformations of one or more of its

components. For these problems, an elasto-plastic constitutive tensor ,.C must be used in
the equation (20). Lotropic hardening and isothermal conditions can be assumed for the '
descripton of this tensor. The material yield condition is written as:

where "- is the Cauchy sess tensor and "ic is the hardening parameter (which is a function
of the state of strain). Yielding occurs when equation (23) is satisfied. Any further strain
increment will be partially elastic and partially plastic. These strain increments are related
with the total strain increment by

dl.e=dI,e +d.ee (24)

Furthermore, let associated plasticity be assumed. In these conditions Zienckiewicz [34]
shows that the form of the elasto-plasic constitutive tensor is given by 44i~.

where CE is the elastic consitutive tensor. The parameter H is the slope of the plot of the

stress versus plastic strain for the uniaxial test if the Huber-Von Mises surface is used in
equation (23).

433

* IT



r-r

I' p j
3.4. PARTIALLY FLEXIBLE BODY

Equation (17) describes thoroughly the motion of a flexible body. However the form
of this equation is not efficient for numerical implementation because not only all the
quantities of the right-hand side are not constant but also the mass matrix is variant. A
simpler form of the equations of motion for a flexible body is obtained if a lumped mass
formulation is used and the accelerations i' are substituted by a vector of nodal accelerations
relative to the nonmoving reference frame Ojf [23].

The vectors of nodal accelerations can be partition,,t into translational and angular
accelerations as:

ii"= ; qr,
Lf'J a]

The relation between the relative and absolute nodal accelerations for a node k is described
by:

r ' IT lrk f + S + )P1 o,.l +6,)'+2&P(S
+L-[ (26)jLo x +l-

where xk is the position of node k in the reference configuration. Equation (26) is evaluated
for all nodes of body i and substituted into equation (17) yielding

g(d') =g (27a)
k-i k

i[M( dj=g' (27b)
I kMff;-g-,. ,liLK ) (27c)

Equations (27a) and (27b) are the equations of motion for the center of mass of a system of
-articles [351. Equation (27c) is the equation of motion for the nodes of the flexible body,
expressed in the body fixed coozt .nate system. Note that due to the use of the lumped mass
formulatiot: the mass matrix Mff is diagonal and written as:

Mtf = Diag(mjI,,'",mkI,'" r..I,10)

where mk is the lumped mass of node k, and I and 0 are 3x3 identity and null matrices
associated with the translational and rotational degrees of freedom, respectively.

If the origin of the body fixed coordinate system is coincident with the center of mass of
the flexible body, equations (27a) and (27b) are the equations of motion of the origin of the

I11; referenciaL Very often it is useful to locate the origin in some other poLit of the flexible
body. For this purpose let it be assumed that the flexible body has one rigid part and one
flexible part. Let the body fixed coordinate frame be attached to the center of mass of the
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rigid part as shown in figure 4. The flexible part is attached to the rigid part by the nodes
* that belong to boundary W,. The body-fixed coordinate frame is the same for the rigid and

flexible domains.

Current Configuration
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f j
where M is a diagonal mass matrix containing the mass of the j boundary nodes. Matrices
XT, S and 1 are made from (3x3) matrice as:

I'

IAI TX +0 I

X-r=  ; S= is '2)  ; i

Vectors C' and C' represent respectively the reaction force and moment of the flexible part
of the body over the rigid part. These reation force/moments are written as

, , , t 00
C' = g'-,.F, - (,,K'L)u 8'- (,'KL+,KL) (31)

C= -g'tF.0 + (,K ,, Km8'1 O f (32)

In these equations the subscripts 8 and 0 refer to the partition of the vectors and matrices

with respect to the translational and rotational nodal degrees of freedom. The underlined
subscripts are referred to the boundary nodes between the rigid and flexible parts.

Equation (30) is the finite element equation of motion for a flexible body. When finite
elements with rotational degrees of freedom are used to discretize the flexible body, some
null elements appear in the diagonal of the mass submatrix Mr. Therefore equation (30)
cannot be solved explicitly for the accelerations. Three approaches can be used to solve this
problem. In the first approach rotational inertias obtained by lumping the off-diagonal terms
of the consistent mass matrix M,, are used to replace the null coefficients. In the second
approach a static condensation of the nodal rotational degrees of freedom is used. In a third
approach the modal superposition technique is used to eliminate the explicit use of nodal
rotations In what follows, any reference to the use of equation (30) implies the use of the
first approach. The second and third approaches are discussed next.

3.5. STATIC CONDENSATION OF NODAL ROTATIONS

In order to use the static condensation of the rotational degrees of freedom let the nodal
equations of motion be partitioned into translational and rotational degrees of freedom. The
relation between the translational degrees of freedom and the rotational coordinates is
described by

i ,K (g'-.,,. . (33) t - t t t •

Applying equation (33) to equation (30) results in the equations of motion of the reduced
system, i.e., without the explicit use of the rotational degrees of freedom. These equations
are written as:

b' 5
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By a proper choice for the location and orientation of the body fixed coordinate system
in the rigid part of the flexible body, the mass matrix in equations (30) and (34) is turned into
a diagonal invariant matrix. For this purpose the position of its origin must be coincident
with the center of the system of masses composed by the rigid part and the boundary nodes
J..f &.e flexible part of the body. Furthermore the coordinate system must be aligned with the
principal directions of inertia of the rigid part plus boundary nodes.

3.6. MODAL SUPERPOSITION TECHNIQUE

In order to achieve computational efficiency in the solution of the flexible body equations of
motion, the modal superposition technique has been widely used [24,29]. This method is
well suited to reduce the number of degrees of freedom of a flexible body when the mass and
stiffness marix are time invariants and the frequency contents of the external applied forces
are of the same order as the lower natural frequencies of the flexible body. This procedure
can still be applied for cases where the stiffness matrix shows some level of nonlinearity.
Assume that the stiffness matrix is decomposed into an invariant matrix and a displacement
dependent matrix. For cases where the material constitutive tensor is constant (linear elastic
material) the constant stiffness matrix is ,KL while the displacement dependent matrix is
,. Moreover, assume that the first two rows of equation (30) or equation (34) have

been solved for i and 6'.
Substituting the relation between the global nodal accelerations and the nodal

accelerations relative to the body fixed coordinate system, given by equation (26), into the
third row of equation (30) gives

Mffii'+,!KL'u' = g'- 1!F- 1,K u'- f, (35)

where vector f, represents the inertia forces due to the substitution of g!obal nodal
accelerations by local accelerations. This vector is written as:

= [M(At - S - - 2WS) (36)

L 0J

Here W, and W2 are represeiited by

W, Diag( 6', C,..-,& ')
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The solution of the eigenproblem, posed by equating the right-hand side of equation
(35) to zero, is a set of natural frequencies and corresponding modes of vibration for the
flexible body. The nodal displacements can be expressed as a linear combination of the
modes of vibration, i.e.

'u' =Xz (37) 4

where X is the modal matrix. The number of modes of vibration envolved in equation (34)
is nm which is normally much smaller than the number of nodal degrees of freedom of the
flexible body. Once the modes of vibration are not time dependent, the modal accelerations
and velocities are given by

ii' = Xi (38)
6, = Xi (39)

Equations (37) through (39) are now substituted into equation (35) and the result pre-
multiplied by XT Using the property of orthonormality of the modal matrix with the mass
matrix it is fnthat

w-XT(g/-,,-,,K u'-f,)-Aw (40) .

where A is a diagonal matrix with the squares of the natural frequencies. Equation (40) is
the modal equation of motion for the flexible body. The complete set of equations of motion
for the flexible body is composed by the two first rows of equation (30) and equation (40).

3.7. APPLICATION TO A ROTATING BEAM

The problem of a canteliver beam attached to a rigid hub, which is spun up from rest to a
constant angular speed, is analyzed here. This problem, first proposed by Kane et al. [36] is
studied in order to show the performance of the methodologies presented, namely to show
the difference between the application of the different types of coordinates used to describe
the deformations of the flexible body..

Thecanteiver beanm, with a lenght of 10 meter and annular cross section is presented in
figure 5. The angular speed of the hub is a function of time prescribed as:

5d/s 
0)(t) = sn A a 5t51

6 rad/s t>15
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L = lOre
MD7 6.52 cm

d = 6.12 cm
E 69 10 9N /m 2

P 3000 Kg/ m 3

Figure 5 Rotating beam

i.The results presented in figure 6 show that if a linear behavior is assumed for the beam,
i.e., the geometric stiffness is neglected and the deformations are small, the tip displacement
of the beam with respect to the body fixed coordinates becomes infinite after 7 seconds of
simulation. If equation (34) is used to represent the flexible body, the results are similar to
those obtained by Kane et al., and the tip displacement increases while the angular
acceleration of the hub is increasing. The tip of the beam ends up oscillating about its
undeformed position after the angular speed becomes constant.

-,, 01.1

-0.2 . . . ." . . ......... .................. .. J - ....... .... .....o3. .. J.

p .0. 3
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Figure 6 In plane displacement of the tip of the rotating beam
with respect to the underformed position
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The different types of equations of motion are referred here as: equations with no~coordinate reduction (30); statically condensed equations (34); and modal equations of: motion (40). When a linear behavior for the beam was assumed all forms of the equations of
motion provided the same behavior. When the beam was allowed to show a geometricnonlinear behavior the solution of the equations of motion based in the modal superpositionhad an error of 10% relative to the results obtained with the equations of motion with static
condensation or with no coordinate reduction.

4. Concentrated Deformations . Plastic Hinges

The plastic hinge concept has been previously developed by utilizing generalized springelements to represent constitutive characteristics of localized plastic deformation of beams.Bending plastic deformation at an attachment node has been modelled by revolut joints, asshown in figure 7. b ua

Y E) N
'* I / . y \.

i / 7 \ ''

noe

N J

k

xFigure 7. Plastic Hinge concept

The revolute joint must be simultaneously perpendicular to the neutral axis of the beamand to the plastic hinge bending plane. From figure 6 the following relationship can be
written

OiU = i + e'- l- kJ (41)

which shows the dependency of the plastic hinge angle on the rigid body positions and onthe elastic rotations of body i and body j at the attachment node k. The angle values art
directly obtained as relative coordinates froru the integration process and correspond to the
relative degree of freedom, Oij, of the revolute joint under consideration.

Figure 8 illustrates a typical torque-angle constitutive relationship which has beenobtained in an earlier work (37] for the case of a steel tubular cross section based on a

4 0 ,'-.-,.- ,-- ,.- . 'y '  ,
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Figure 8. Plastic Hinge constitutive relationship

4.1. EXAMPLE OF AN IMPACTING BEAM +

~~The formulations for rigid and flexible body dynamics including the plastic hinge model have
beLen implemented in a computer program. In order to verify the proposed analytical i

technique a comparison with an experimental test i40,41] was carried out.The experimental set up for this test case and the test specimn are shown in figure.9. !

Thetest bar is an36steelbox-ieamtube, 1 mlong, with a 50x25 mm hollow rectad.ar' section and 2.65 mm thick. One of die bar's ends is articulated to die ground structure wiha
revolute joint which is realized by means of a coupling sleeve allowing the rotation of die bar .4
around an horizontal axis. A ballasting mass of 5.95 kg is attached to the other end of die y

• bar. This mass is made of an XC38 steel cube 90.5mm long. "
The test procedure is similar to the pendulum ram impact test. The bar is accelerated by it

, , means of a fast cylinder which actuates until an angular velocity of 11.85 rad/s is reached.

'h-K i l +.ti



After stabifiation of the velocity, the bar collides with a rigid block. The edge of this rigid
block is trahee to the beam longitudinal axis and located at a distance of 0.5 m away from
the axis of the revolute joint During the impact, accelerations have been measured using
accelerometers which were implanted on the ballasting mass. A post impact observation
clearly ind-ates the existence of a localized plastic bending zone which supports the
consideration of a plastic hinge and a final value of the permanent bending angle was
measure and was found to be 220.

rlit

Figure 9 Experimental configuration

A serie4 of computer simulations have been performed for the analysis of the impacting
beam referred to above. Different rigid and rigid-flexible models have been considered which
are shown schematically in figure 10.

Two rigid models with two and four bodies and two and four revolute joints
respectively; and two flexible models with the same topology of the rigid body cases. Plastic
hinges have been assumed in all intermediate revolute joints. Each flexible body was
discretized with one finite element across and with extreme nodes located in the revolute
joints and in the ballasting mass. A translational penalty spring with a very high stiffness
was included to represent the unilateral contact between the beam and the impacted edge.
This spring actuates only in the compression stage. During the initial stages, before contact,
and in the final rebound phase this spring element is stretched and no force is considered.

Figure 11 illustrates a sequence of computer generated positions for the two rigid body
model during the simulation time. The predicted gross motion shows a similar trend when
compared with high speed photographs. An a.s'ssment of the accuracy of the theoretical
models is made on the basis of the results obtained for the permanent bending angles. This
is justified as the final configuration of the beai is strongly dependant on the dynamics of
the problem and also on the mechanisms of energy absorption. The measured and calculated
final bending angles are summarized in the table 1. An excellent agreement can be observed
when comparing the exp.rimental value with the different numerical simulations.
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Table 1. Comparison of Results

bendine angles ..

Experimental test 22.00

RIGID 
230gI inge 23.00 4.7

Ihinge1.03 hinges 22.20

FLEXIBLE
I hnb: 21.60 1.8
3 hintes 22.10 0.4

S. KInetostatic Method

For some applications of the crashworthiness analysis, the mass of the deformable part of
the flexible body is relatively small compared to that of the rigid part. This may happenwhen the deformable part is a layer around the rigid body or a flexible appendage. This
concept is illustrated in figure 12 for the rollover of a vehicle where the flexible part is
designated by X.

(a)

(b) (c) °

Figure 12 Schematic representation of the rollover of a vehicle with a rollbar
cage: (a) Global displacement of the vehicle; (b) Deformation of therollbar cage during impact; (c) Force/Moment reaction over the
chassis due to structural deformations. ;
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In this method, the following asu,,ptions are made: the mass and moments of inertia
of the structure can be neglected when compared with that of the rigid body; the mass and
moments of inertia of the rigid part include that of the flexible part; the deformation of the
flexible part does not change the inertial characteristics of the body.
thFor simplicity of notation, the deformable part of the flexible body is here designated by

"the structure" while the rigid part of the same body is referred to as "rigid body i". It is
assumed that the material constitutive law for the stucture is linear elastic; the deformations
are small; no other force besides the reaction forces from impact is applied over the structure

The equations of motion for a rigid/flexible body are given by equations (30). The rigid
and flexible equations are numerically uncoupled. In the right hand side, the action/reaction
forces between the flexible and the rigid part are accounted for. Using the assumption of a
massless structure for the flexible equations of motion, all of the nodal masses are11 eliminated. In order to maintain the total mass of the rigid/flexible body, the inertia of the
structure is added to that of the rigid body i. Equation (30) becomes:

M 0 0 r t+i-C,
[o J' 0 i' = n'- @11a', - src, - iCe (43)

0 0 0 4f g'-,:F -(,K,+,KnL)u'

where the mass m and the inertia tensor X contain the inertial properties of the rigid body i
and structure. The first two rows of equation (43) are the equations of motion for the rigid
body. Vectors c6' and c9' represent the reaction forces and moments and are given by
'quations (31) and (32) The last row of equation (43) is the static equilibrium equation for,, ~the structure.
the Assuming that the structure is linear elastic, i.e., the constitutive equation is linear and

the deformations are small, equation (43) can be partitioned into:

r~ Tn [ r +c 5  1(44a)
d Ln' - @TJ'w' - SrCs - Irc J

K u'=g (44b)

Comparing equation (44b) with equation (27c) it is observed that the nonlinear stiffness
matrix XKL vanishes due to the assumption of the small deformations. The linear stiffness

ma=rix KL becomes constant due to the assumption of the linear elastic material law and it is
denoted here by K. In this sense u' is a vector of total nodal displacements rather than a
vector of displacement increments. This implies that the vector of the equivalent nodal forces
tF vanishes. The vector of the applied nodal forces g still contains the external applied

forces over the nodes and the forces due to the force elements that are connected to the A
structure. For the purpose of deriving an expression for the nodal forces due to the impact
with an obstacle, let it be assumed, for the moment, that all forces applied over the structure
(vector 1V) are only due to the impact, i.e., g/ are the reaction forces of the obstacle over
the structure plus the contact friction forces.

When the structure impacts another object, for example a rigid nonmoving obstacle, it
undergoes some deformations as shown in figure 12(b). In turn, the effect of the
deformation of the structure over the attached rigid body is described by applying a

: ~~~~445 ..::;.
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force/moment on body i, as depicted in figure 12(c). This force/moment, denoted by f, is
simply the resultant of the reaction forces of the structure over the rigid body. Referring to
equanon (44a), the reaction force/moment is given by

f- -', (45)

where vectors c8' and c9' depend upon the nodal displacements of the structure. The
objective is to calculate the vector of nodal displacements u' iq an efficient manner, so that
the reaction forces f can be obtained.

Let thefc node of the finite element representation of the structure come in contact with
the surface of an obstacle. Te surface of the obstacle is defined by the global coordinates of
a point Q, denoted by dQ, and a normal unit vector nJ as shown in figure 13. The subscript
j is used for point Q and vector n in order to indicate that this surface contacts nodej.

, P

6 r

z

Figure 13 Definition of the position constraint posed by the rigid surface

At any given instant, the global coordinates of the undeformed position of node j,

denoted by vector dj, can be calculated from the global configuration of body i. The
'apparent penetration" aj of nodej into the contacting surface, as illustrated in figure 14,
canbe calculated as

I(

a, =nT(d?-d,) (46)

In reality, the structure deforms in such a way that node d, remains on the surface of the

obstacle. Denoting by 8j the vector of nodal displacements of node j, the projection of this
vector onto the normal to the surface must be equal to the apparnt penetration cxi, i.e.

, .nr8 j = j(47) , -
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Equation (46) is substituted into equation (47) to yield one constraint equation for nodej as:

n (5j +d, + d9)'- 0 (48)

In order to apply this constraint to the static equilibrium equations of the structure,
equation (44b), the nodal constraint equation (48) must be written in terms of the nodal
displacements with respect to the body fixed coordinate system, i.e.,

: n [A (  + b ) +  r-  d ]  0= 
(49) i

This equation is rearranged as:

nTA 8! =-nT(A V +r- d9)  (50)

This equation, which is another form of equation (47), is the constraint equation on the
displacement of node j. If more than one node simultaneously contact one or more obstacles,
equation (50) is written for each node and the resulting set of constraints become

Gu'= ct (51)

where the rows of matrix G contain the components of vectors normal to the obstacle, u' is
the vector of nodai displacements for all of the nodes, and vctor ot containas for aU of
the contacting nodes.

al n e (u , nd s n m

b, 

a

Figure 14 Contact between nodej on the struct.re and a rigid surface
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The reaction force at node jis denoted by N. It may be assumed that there is also a friction
force acting on the structure at that node. This fricton force g',as shown in figure 15, can
be expressed by' -I~ jl T V ,

g' NjJ A (52)

where g is the friction coefficient and vi is a unit vector in the direction of the velocity of
node j projected on the constraint surface. It must be noted that this force is valid only if
there is sliding of nodej. If friction force given by equation (52) is less than the product of
dynamic friction coefficient by the normal reaction force due to the ground normal reaction,
then stiction occurs. This case is not considered here.

0,,

Figure 15 Reaction and friction forces at node]
These constraints are introduced in the static equilibrium equation of the swuctur. using

the Lagrange multiplier technique. Denoting by o the Lagrange multipliers associated with
the constraints of the contacting nodes, the system of constrained equilibrium equations is

[K GL ] (53)

Note that the term GTo in equation (53) represents the constraint forces due to the impact.
For thejth node, the quantity Nj is:Nj = G" Tj = , m r j (54)i
which is exactly the reaction force normal to the constraint surface at node j. Substituting this

equation into equation (52) and observing that nj is a unit vector, yields

F,' =-, oJa A T ,Vj (5 5)
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Ile nodal constraints are unilateral; i.e., aj does not change sign and it is a positive
quantity as long as there is contact. Therefore, equation (55) is written as

g- HI Ta (56)

where HT =-g. ATv,. If more than one node is in contact with the obstacle, and friction
forces are the only external forces on the structure (excluding the reaction forces), then
equation (56) is evaluated for all those nodes. This yields:

= HT a (57)

where matrix If! contains all HiTs. Substituting equation (57) into equation (53) results

[K (G -H) T u'][ (58)

This equation is solved to find a as

a = [GK-i(G- H)Tfa (59)

The dimension of matrix [G K-1 (G - H)] is k xk where k is the number of nodes in contact"
Therefore, this is usually.a very small matrix, and in most cases, a scalar. This means that
the inversion of this matrix is not computationally expensive. The stiffness matrix K needs
to be inverted only once as long as its elements are not changed. This is the case when only
small linear elastic deformations are considered.

After evaluating the Lagrange multipliers a from equation (59), equations (53) and (54)
are used to calculate the reaction and friction forces at every contacting node. Since the
structure is in static equilibrium, the set of reaction force/moments f as given by equations
(45) is equivalent to the set of forces N and gr as if they are directly applied to the rigid body
i. For a typical contact node j, Ni and gr act on body i at pointj which is considered as an
extension of body i. These forces cause a moment on body i due to the moment arm, which
is a vector locating pointj drelative to the origin of body i.

During a simulation, as long as none of the nodes in the structure is in contact with any
obstacles, f is a null vector. This means that the dynamic analysis proceeds as a multi-rigid
body system. In order to detect if a particular node j contacts or penetrates a surface at a
certain time step, the term ccj is calculated from equation (46). A positive cxj means no

contact and a negative ,vj indicates a penetration. When penetration is detected, the
corresponding reaction f, '-.e/moment is calculated and included in the vector of forces. This
reaction force/moment is updated as long as the node is in contact with the obstacle. When
mor than one node is detected to be in penetration, the sign of all Lagrange multipliers in
vector a must be verified. If any of these multipliers turns out to be negative, its
corresponding constraint must be removed and equation (59) must be solved again. This
situation can be described by referring to figure 16. As illustrated in figure 16(a), the
undeformed configuration of two of the nodes are in "apparent penetration", i.e., negative
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values for aj's are obtained from equation (45). However, in reality, if the deformation of
the structure is considered, only one node may be in contact with the surface as shown in
figure 16(b). If two nodal constraints are enforced, then an incorrect structural deformation
is obtained. The negative Lagrange multiplier indicates which nodal constraint is enforced
incorrectly and consequently must be removed.

ronsraint

raf

(a) (b)

Figure 16 An apparent penetration of two nodes may yield: (a) a positive
and a negative reaction force for two incorrectly enforced
contacts; (b) removal of the contact constraint on one node yields
correct deformation of the structure

6. Application to an Utility Truck Rollover

The vehicle simulated here is an utility truck. Originally this vehicle did not have any
protection in case of a rollover. In order to provide that extra protection for passengers, a
roilbar cage was attached to the chassis of the truck. This study involves determining the

The model of the vehicle, excluding the rollbar cage, consists of the main chassis, the
complete suspension system, and four wheels, as shown in figure 17. The front wheels are
connected to the main chassis by unequal A-arms (double wishbones). The rear wheels are
connected to the main chassis by semi-trailing arms. Suspension springs, shock absorbers,
and jounce stops are modeled by point-to-point spring-damper elements with nonlinear
characteristics, as presented in figure 18. Tire characteristics including traction, braking od

4 lateral forces due to steering were considered depending on such factors as normal force, slip
angle and camber angle. The vehicle model consists of fifteen joint coordinates, equal to the
number of degrees of freedom of the system. Six degrees of freedom correspond to the
main chassis, four to the four suspension systems, four to the rolling wheels, and one to the
steering.

The rollbar cage is a flexible frame mounted over the chassis to protect the passengers ",
in case of a rollover. The rollbars are made of 1025-1030 steel with a yield strength of
30,000 psi. The cross-sectional area of each bar is annular with an inside radius of 2.14 cm
and an outside radius of 2.54 cm. Two models for the roUbar cage are considered here: a
model based on the plastic hinge technique, and; a finite element model.
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Figure 17 Schematic model of the utility truck
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Figure 18 Front and rear suspension systems of the utility tuck

6.1. PLASTIC HINGE MODEL

Within the framework of rigid body dynamics it is possible to simplify the plastic hinge0 ~~model by asuig (i) Point particles with only three tra.,..lational degrees of freedom to ,modl the cage beam elemen s in a lumped mane, (ii) These partcles.am ass.um. to

be connected to one another and to the main chassis by massless links; (iii) The relative
angular orientation of these massless links are monitored during the roll over analysis and
moments are applied accordingly using some constitutive law obtained from analytical
models or in suitable experiental tests. This model is schematically presented in figure 19.

A
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Figure 19 Representation of the roilbar cage using plastic hinges

A simple structure is considered in figure 20 to illustrate the present plastic hinge model as
compared to the model described previously. In the model (3) moments are applied in the
revolute joints according to some suitable constitutive law Mi = Mi (0i). In model (b), the
resistive moments will be represented by forces actuating on the particles.

F oF,

M,

F2

Figure 20 Plastic hinge model used for the rollbar cage

For example, for the relative angular motion 02, these forces can be calculated using the
following simple vector relationships,

F=M 2 (02 )F 2 =M()
112

A rollover test for the truck was performed by placing the vehicle over a cart moving at
a speed of 30 m.p.h. and impacting a water filled decelerator system, thereby throwing the
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truck off the cart. The initial roll angle was 23 degrees, and the height of release was 30 cm

as shown in figure 21. In order to maintain the total kinetic energy of £he vehicle
approximately the same as in the experimental test, an initial speed for the truck at the time of
departu-e is assumed to be 25 m.p.h. plus a angular velocity of 1.5 rad/s in the roll direction.
Several accelerometers were attached to the vehicle to record the responses.

Sii

f o m-ol d n tirand

,,V 25 m.pAh

E230

0.3 m

Figure 21 Initial conditions for the truck before rollover

Ile rollover simulation was performed from the instant the vehicle departed the can. A
friction model describing the interaction between the vehicle and the concrete ground was

developed. The vehicle experienced a 2470 roll and came to a stop on its side after
approximately 4 seconds. The recorded and simulawA accelerations at the center of mass of
the main chassis were compared in the lateral (y) and in the vertical (z) directions and are
sumarized in table 2 for peak acculerations. Both the test and simulation showed that the
rolbar cage did not collapse, and a maximum plastic deformation of 4 cm was observed.

Table 2. Comparison of peak accelerations

ce Expatimmt Simulation

Ymin -7.5 0.43 -7-7 0.44
YMAX 6.5 1.0 6.3 1.78
zinZin -15.0 0.43 -15.0 0.44

iz 1 -- E*5.2 2.24

-Not avaable due to accelerometer damage

a
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6.2. FINITE ELEMENT MODEL

The finite element model of the cage is composed of 13 beam elements and 12 nodes.
In order to simulate the attachment of the cage to the chassis, 6 of the nodes are fixed to body
1, as shown in figure 22. This leads to a finite element model with 36 degrees of freedom.

' I

chat"

Figure 22 RoUbar cage and chassis

In order to evaluate the performance of the methodologies described in this paper, the
simulations are made assuming no friction between the contacting rollbar cage nodes and the
ground. Moreover, an unilateral constraint bemeen ccntact nodes and ground is introduced
whenever a node of the rolbar cage iniciates its contact with the ground. This constraint is
removed when the sign of the Lagrange multiplier associated with tids constraint changes.
c Figure 23 shows the vertical displacement of the center of the chassis using complete
coupling between the gross motion and the deformation of the flexible bodies of the system.
In the kinetostatic method only a linear elastic material behavior is considered. For
comparison the first simulation was run with a similar material behavior for the rollbar cage.
A second simulation was performed using a material with the yield strength referred to above
and a tangential plastic modulus given as ET=E/10.
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.. " - E~ .......... ............ .... .....
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Figure 23 Vertical displacement of the center of mass of the chassis
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' , N These simulations show that both methods predict very similar behaviors within the
' ~ first 1.5 seg. when a linear elastic behavior is assumed for the rollbar cage. The height ofI

the vertical displacement of the chassis for the current method is lower than for the
kinetostatic method because: some of the energy of the system is dissipated in the vibration
of the cage; there is inertia coupling between the vehicle gross motion and the cage
deformations. is dissipation of energy is clear from figure 24 where the lateral deflection
of node I relative top the center of mass of the chassis is presented. In this figure the

w. damping of the vibration of the rollbar cage is shown. Due to the extreme nonlinearity of the
problem. small initial deviations between the results yield quite different motions after the
initial period. When an elasto-plastic behavior is allowed the motion of the vehicle is, as
SpectA completely different from that of the kinetostutic method.

0

-0081. -1 --'

0 0 _ _ _ _ _ _ _ _ _ __4 e I~m ' "

Tu(s)

i " Figure ~~~24 Lateral deflection for node 1 o h lbrcg

t 7. Conclusions !

General formulations for the dynamic analysis of rigid and flexible multibody systems
suitable for crashworthiness and impact were reviewed in this paper. Based on an updated
Lagrangian formulation, the geometric and material nonlinear deformation of a general
flexible body was described and introduced into the multibody system description. The
equations obtained in this form were highly nonlinear and inefficient for computational -

~purposes. A simpler form of these equations were obtained using a lumped mass
formulation and referring the nodal accelerations to the inertial coordinate frame. Thoughnttdigalms ixwsoaieheueralpfraceftes eq atin
was still not adequate, if the methodology is to used as a design tool. i

" Zones of localized instabilities are difficult to model in a simple form using the finite
, e~Clement method. A plastic hinge and a finite element model have been combined to provide
; ~an hybrid model for obtaining the dynamic plastic response of structural systems under
~~impact condlitios. The numerical method is quite general and the impact responses of stress, A

acceleration, velocity, position and structural generalized displacements of anypr of the
~~structure can be calculated at any instant of time. It has been shown that this procedure is .
, adequate to predict the behavior of a rotating beam impacting a fixed edge. It was found that
t good agreement exists between the theoretical/numerical results and an experimental test 4
~wich was carried out to validate the proposed methodology.
: For situations where only a localized part of the flexible body deforms as a result of an,

, ] impact it m#ay happen that the mass of such region is neglectable when compared with the A
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mass of the undformed par. In this case the flexible part of the body may be assumned to be
massless. rhsasmto e otedevelopment oa iesticmdlfrcrash-impact.
The main advantage of this model is that the calculations of the deformation of the flexible
bodies are only carried on while contact between body and ground lasts. TIs methodology
seems promsng, but some work needs still to carried on in order to allow the structural
behavior of the impacting bodies to be nonlinear.

The computing times for the flexible models are at least one order of mantd larger
then the times required for the equivalent rigid body models (plastic hinge and kinetostatic).
This is due to the increase in degrees of freedom of the problem and the need to drastically
reduce the integration time steps in order to accurately integrate the high frequency content
resulting from the linear elastic structural vibrations of the flexible bodies.

The mc-fiodologies described in this paper, are quite general and can be applied in the
impact analysis of complex structures undergoing gross motion as, for example, the case of
vehicle crash situations. '
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CONSTRAINED MULTIBODY DYNAMICS
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ABSTRACT. This paper presents some techniques that may be used to obtain more efficient and general
computer-based dynamics modeling and simulation algorithms with potential real-time applications.
Constrained equations of motion are first formulated in an augmented differential-algebraic form using
spatial Cartesian and joint coordinates. Spatial algetira and graph theoretic methods allow separation of
system topology, kinematic, and inertia properties to obtain generic equation representations. Numerical
stability is improved by employing coordinate partitioning or singular value decomposition to define
suitable sets of independ-nt variables. Substantial matrix operations during run-time are avoided by
employing equation preprocessing to generate explicit expressions for all dependent variables, and
coefficients of their first and second time derivatives. The velocity and acceleration coefficients allow
explicit elimination of all spatial and dependent joint coordinates yielding a minimal system of highly
coupled differential equations. A symbolic re-ursive algorithm that simultaneously decouples the reduced
equations of motion as they are generated, was developed to maximize algorithm parallelism.

1. Initoduction

Developing real-time computer algorithms for large-scakl. highly constrained mechanical systems
is a challenge. Extensive understanding of underlying equation structures, symbJlic and
numerical procedures, and supporting computer architectures is essential. Equation manipulation
a,"' solution procedures may be hand optimized, but most are not easily automated. Problems
stem from equation complexity, the diversity of parametric descriptions, topology and
interdisciplinary effects, and changing computer hardware and software architectures.

The purpose of this paper is to abstract kinematics and dynamics equations into block matrix
structures, and investigate procedures for achieving better performing computer programs. I rge
scale constrained systems with 70% or more dependent state variables are the grand challenge for
real-time simulations because the run-time computation of the dependent variables and terms
depending or, them represents a significant overhead in evaluating and solving the state equations.
A special class of bounded systems composed strictly of lower pair joints is considered because
the kinematic equations allow many quantities normally computed at run-time to be precomputed
and evaluated using interpolating functions. This can help reduce recursive computational
bottlenecks and improve parallel processor performance. One problem with precomputing terms
is that quantities generated at successive stages of recursive decoupling will depend on increasing
numbers of variables, which increases dimensionality of the interpolating functions. Function
evaluation overhead increases exponentially with dimensionality, so tradeoffs between
precomputing quantities off-line or evaluating them at run-time must be made.
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2. Approach

Spatial algebra (1, 2] is used to formulate the equations because it allows rotational and
translational quantities to be combined into homogeneous forms making symbolic manipulation
easier. In addition, a compact notation simplifies the representation of arbitrary kinem'atic and
dynamic quantities. The algebra is developed in sufficient detail to provide backgroustd for the
derivations. Spatial vectors and transformations in configuration and function spaces are
introduced and illustrated (2. 3]. They are used to develop compact equations of motion for an
unconstrained rigid body and primitive building blocks for defining arbitrary joints. Block matrix
representations for constrained systems composed of any number of joints and rigid bodies are
introduced.

A general graph theoretic approach [4-6] facili.4tes matrix representation of mechanical
systems containing arbitrary parametric and topological properties. The topology of a mechanical
system model with n1 rigid bodies and n, + n, joints is adequately described by a connected graph
with n2 nodes corresponding to the bodies. and n. arcs and nc chords corresponding to the joints.
A system's defining graph contains a connected spanning tree with exactly n, arcs joining the n.,

V nodes. The minimal spanning tree cresponds to an equivalent open kinematic-loop mechanical
system with only the minimum number of joints necessary to hold all the bodies together. This
includes one or more artificial six degree-of-freedom (dot) joints for referencing floating base
bodies to an inertial frame. All variables in open kinematic-loop systems are independent.

Incorporating the remaining nc chords into the spanning tree completes the graph and penerates
01 independeut circuits. Likewise, adding the remaining n: joints to a model completes it and
generates nc independent kinematic loops. While this process adds more joint variables to the
model, it subsequently reduces overall system dof because kinematic loop constmaints cause more
joint variables to become dependent than are added. In summary, if 0 ! ki 5 6. i = 1 .... na + n
represents the dof allowed by the respective joints, then

n

dof,= ki 1

represents the effective system dof with MI chord joints removed. With chord joints included, the
system dof becomes [7]

, 4" 14

dofs -, k - rank(constraint Jacobian matrix) (2)

where the constraint Jacobian matrix represents the composite coefficients of the combined
system of linearized kinematic constraint equations.

Block matrix representation of the uncoupled equations of motion for the na bodies and arc
joints, and the nc chord joints given in a combined Cartesian and joint coordinate space are easily
formed. Block Boolean arc and chord connecivity matrices .at may contain embedded spatial
transformations. are used to couple the joint and body equations of motion through constraint
reaction forces into a system of constrained equations of motion. This yields a large system of
loosely coupled differential-algebraic equations involving all absolute and joint accelerations. and
joint reaction forces that could be solved by sparse matrix and differential-algebraic ntegration
procedures [8, 9]. However, the overhead of solving these equations is too high for real-time
simulation applications.
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The kinematic loop constraint equations and an iterative Newton-Raphson procedure are used
to solve for all dependent joint variables (and subsequently coefficients of their first and second
time derivatives) in terms of selected independent variables [2, 10]. This allows all dependent
joint variables and their time derivatives .j be explicitly eliminated yielding a smaller system of
differential-algebraic equations. These equations may also be solved by sparse matrix and
differential-algebraic integration procedures. but again it would be impractical for real-time
applications. However, it is possible to decouple a further reduced version of these equations
using a variant of O(n 3) LU factorization. Such an algorithm is developed in this paper.

Without additiomal considerations, these efforts would still be insufficient to achieve real-time
simulation capability ior most large scale system models. Ideally, the equations of motion would
be expressed in explicit form as 4 = f(q, 4, t) where f(q, q, t) is easy to evaluate. The elements of
f, or at least parts of it. would be prect. 2puted off line as functions of q, 4 and t. However, this is
usually impractical because each element of f may depend on too many elements of q and q.

The problem could also be formulated directly in factored form L(q) U(q) 4 =.g(q, q, t) where
L(q) and U(q) are nonsingular lower and upper triangular matrices, respectively. Now the
individual terms in L(q), U(q) and g(q, 4, t) will have fewer variabl, dependencies and it may
be feasible to precompute functional relationships at the expense i" additional computational
overhead during rn-time. In most cases, it is also impractical to find functional relationships for
all elements of L(q), U(q) and g(q, 4, t) because they, too, may depend on a relatively large
number of variables. Therefore, some expression! "ay have to be broken down evwn further until
an optimal compromise is reached between the overhead of evaluating multivariable functions
versus computing the quantities at run-time. The primary advantage of using precomputed
functions is their potential for eliminating recursive operations that bottleneck parallel processors.

3. Spatial Algebra

3.1. NOTATIONAL CONVENTIONS

The quantities dealt with in this paper are first and second order tensors that are generally
represented by column and rectangular matrices, respectively. Column matrices. usually
identified by lower-case letters, are used to represent the coordinates of first order tensors.
Rectangular and square matrices represent coordinates of second order tensors and are identified
by upper-case letters. Stacked or block collextions of column matrices are represented by bold

lower-case letters, which usually match the corresponding symbols of their constituent column
matrices. In a similar manner, bold upper-case letters denote block arrays of matrices that may be

R block diagonal, triangular, symmetric or irregular.
A first order vector tensor is denoted by a lower-case symbol with an overhead arrow a and its t

three by one column coordinate matrix by an underscore

= [aI, a 2, a 3]T (3)

The matrix representation of vector dot product operation a- is represented by aT where

superscript "T" denotes matrix transpose and gives a one by three row matrix. A vector cross
product operation ax is represented by a three by three skew-symmetric tensor matrix
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0 O-a a

=a 3 0 -a (4)
-a, a, 0

Second order vector tensor matrices are identified by underlined symbols that may be lower or

upper case.
A first order spatial vector tensor is composed of a rotational vector tensor ar and a

translational vector tensor a, where either one or both may be zero. It is represented as a stacked
column matrix of the form

a r(~a1

Since spatial vectors and tensors are used almost exclusively throughout this paper. they are
denoted by plain lower and upper case letters with no underscore. The matrix representation of
spatial vector inner product is given by aT A spatial vector cross product is represented by a six.
by six matrix

(6)

Lat a2 0

that is not skew-symmetric. Spatial vector tensor matrices are identified by symbols that are
usually upper-case. Spatial transformations are homogeneous, and can be represented by six by
six (1] or four by four [10] matrices. The latter form is desirable when carrying out products
associated with successive. transformations because they involve fewer multiplications. A
circumflex "^" is used to identify the four by four matrices.

Identity and zero matrices are denoted by regular or bold "I" and "0" symbols. respectively.
Their dimensions are inferred by adjacency to other matrices. The 0 symbols in sparse matrices
are dropped when matrix dimensions can be inferred from other submatrix entries. All matrices
conform to the operations implied by the equations, and the superscript and subscript conventions
will be consistent. A single superscript will associate the elements in a column matrix with a
given coordinate system and a single subscript will indicate block column matrix partitioning.
Double superscripts are generally associated with coordinates of transformation matrices or
second order tensors. Superscripts and subscripts of quantities being combined must conform to
awuid numerical errors. In addition, adjacent superscript and subscript symbols in matrix products
must match. However, transpose and inverse effectively interchange matrix rows and columns so
the corresponding identifying superscript and subscript symbols on these matrices will be

; reversed.
Since general spatial displacement transformations are not orthogonal or orthonormal. it is

conyenient to identify dual spaces called configuration and function space, respectively (3].
Configuration space contains all dimensional quantities such as displacement, velocity and
acceleration, and function space contains derived quantities such as force and momentum. A
function space quantity is transformed by the inverse transpose "-T" of any matrix that
transforms a corresponding configuration space quantity. Reversing the double superscript or
double subscript on any transformation matrix is equivalent to inverting that matrix. The inverse
and transpose of orthrnormAl transformations are also equal.
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3,2. SPATIAL VECTORS AND TRANSFORMATIONS

Spatial vectors are ccmposed of bound and free vector components. Bound vectors describe
quantities such as rotation axes and forces that can be located in space relative to reference points.
Free vectors describe quantities such as translational directions and moments that cannot be
located relative to reference points.

A bound vector is located relative to a point by specifying its moment about that point. Let -U
denote a unit vector lying on a line, and t' a vector from some reference point p to any point ,n

*the line. Then iu and its moment txi about p completely define the bound vector. The moment

t xu is a free vector because it represents a quantity that cannot be associated with any point. If
the line lies on p then t xu =0 and it has no moment about p.

If u lies on some point q which has zero velocity and the body rotates around the line defined
by u with a speed of w, then 73 =(a U gives its rotational velocity and T'x= txu gives the
translational velocity of any point p fixed in the body. Note that i3 is a bound vector and t 'x( is a
free vector. Likewise. if f denotes the magLutUde of a force acting at a point, then f = f u gives its
force vector and t xf = f t xU gives its torque vector. In this case, f is bound and t xf is free. In
configuration space, rotational vector quantities are bound and translational vector quantities are
free. Conversely, in function space. translational vector quantities are bound and rotational vector
quantities are free. In either case, coordinates of the rotational component of a spatial vector are
always stacked above coordinates of the translational component.

These ideas are enforced with an example. Figure la shows two Cartesian frames labeled a
and 3 where 3 is moving relative to a. The spatial velocity of 3 relative to (X in 3 coordinates is

tt

Map f
I)

(a) Configuration space (b) Function space

Figure 1. Spatial velocities and forces referenced to frame 3.

Superscript 3 is a reminder that the coordinates are projected onto 03 axes, and that the reference
point is taken at origin Oo where the translational velocity is specified. Double subscript a[o
indicates that this quantity defines the velocity of f3 relative to a.
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Figure lb shows an equivalent system of forces acting on 1 that have been reduced to 00

gt--
= [HT, ] (8)

Again superscript 3 is a reminder that the coordinates have been projected onto 13 axes and the net-
force has been specified a 00 where the rotational torque was arbitrarily placed. In this case. the
single subscript 3 indicates that these quantities act on 13.

Figures 2a and 2b show the same systems where the spatial velocity and force ar specified on
13, but at the unique point fixed in it tha. instantaneously coincides with O. Inspection of these

(a) Configuration space (b) Function space

x~l "

Figure 2. Spatial velocities and forces referenced to frame a..

figures reveals that the relative spatial velocity, which is now expressed in a coordinates is

and the spatial force is

a - 0 60T 
0T

gX [a j YP Oct T]

JX

Now, superscript o is a reminder that the reference point coincides with and all vector

quantities have been transformed to c Equations 7 and 9 also imply that v may be interpreted

as representing the vector sum of velocity component t in a nonrotaring frame and the

addiionlvelcit comonet .fx at an. arbitrary point * fixed in a frame rotating at

around fixed point O13. Likewise Eqs. 8 and 10 imply that g represents the vector sum of torque,,

component twith the additional moment component

f Nw acting at O . Before fining functional relationships between the quantities in Eqs. 7 to 10. it

will be helpful to develop expressions for homogeneous satial transfonration matrices. a

I. i
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An orthonormal rotational displacement transformation matrx may be expressed as [I I]

~~RCL= I + sineOUo + [ I - cose.0) iI

where .U represents a bound unit vector defining the orientation axis between a and 3. and e.0 is
the rotational displacement of 13 relative to a around this axis.

Let a and aO denote coordinates of an arbitrary vector a in frames a and 13, respectively. If

a=R (12)

the following similarity transformation holds (12)

-~ (13)

Let

R (14)

denote an orthonormal spatial rotational displacement transformation matrix. Then Eqs. 12 to 14
may be used to verify that Eqs. 7 and 9 are related by

va =D~ (15)

where

D =TaR :RO T (16)

is a general nonorthonormal spatial displacement transformation matrix and

T4- ,(17)

is a nonorthonormal spatial translational dispiar ment transformation matrix.
In a similar manner, Eqs. 8 and 10 are related by

ga-DOgT (18)

where

-T (19)
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, and

1T0 *=. (20)

These transformations preserve the inner product between function and configuration spaces.
Let a' and b" represent the coordinates of arbitrary spatial vectors in configuration space, each

referenced to c. Then the matrix representation of spatial cross product (see Eqs. 3 to 6)

a b=-b ;aa (21)

holds for the coordinates of any two spatial vectors in configuration space referenced to the same
frame. The cross product of a spatial vector with itself is zero. Let bf represent the coordinates of
an arbitrary spatial vector in function space, referenced to a. In this case, the following matrix
representation of spatial cross product holds

: .aMT .a= ;..T a

ac bf-f ac (22)

Note the sign reversal and matrix transpose when forming cross products of spatial vectors
between the two spaces. Cross products between spatial vectors in function space are not defined.

The spatial transformation matrices presented in Eqs. 14 and 17 may be defined directly in
terms of spatial vectors as follows. Let

u (23)

represent the spatial coordinates of a bound unit vector that defines the orientation axis between a
and 0, and let bp be the rotational displacement of [3 relative to a around this axis. Then (see
Eqs. 5.6. 11 and 14)

R = I+sinOUo+(1-cosec)u o  (24)

In a similar manner, let

'31 a,(25)

a represent the spatial coordinates of a free translational vector that defines the translational
displacement of 3 relative to a. Then (see Eqs. 5, 6 and 17)

T4=I + t ,=a. (26)

Now identities similar to Eqs. 12 and 13 may be verified. Let ao and aO denote coordinates of
an arbitrary configuration space spatial vector in a and 13, respectively. Then if
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!a 0
ac =D ac (27) 4

the following congruent transformation holds

i D = -a (28)

In a similar manner. let a and a denote coordinates of an arbitrary function space spatial vector
in a and 3, respectively. Then if

f= Da'T af (29) ,

the following congruent transformation also holds

iDf T= D Taf (30)

3.3. SPATIAL VELOCITIES AND ACCELERATIONS

A matrix identity for rotational velocities may be obtained by differentiating the coordinates of an
arbitrary vector fixed in a moving frame and equating its matrix coefficients giving [121

R cia(31)
t. ..

p where

0= R 8 (32)

defines the rotational velocity of J3 relative to a (compare with Eqs. 13 and 12.) Using Eq. 15. a
similar identity may be derived by differentiating an arbitrary spatial vector fixed in a moving
frame and equating its matrix coefficients giving

cO( -a ao -p
D =czD =D P (33)

(compare with Eqs. 27 and 28.) Noting that D - D and v;,=-v, * =a. 3, Eq. 33 may be

used to find the time derivative of the inverse of any spatial transformation matrix as

'( .... a&- DA=-D v0 (34)

These identities will be used extensively to simplify many of the following developments.
It is convenient to represent the spatiai displacement of an arbitrary frame or body by a Aseuneof spatial displacements given by homogeneous spatial products. For example. let '

Day=D pD 0Y  (35)
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represent the results of two successive spatial displacements. Then Eq. 35 may be differentiated
with respected to time giving

+oD = bD D y +D0boy  (36)

which, according to Eq. 33. represents the spatial velocity. Using Eqs. 15. 27. 28 and 33. it
follows that

Do =vcD D v (37)

where

,p,--vq+v;Y,. (38)

Equatons 35 to 38 may be generalized and applied any number of times to write out spatial
displacements and velocity equations between any two frames.

Spatial velocities are differentiated to obtain spatial accelerations. Let a be fixed and
differentiate vop in that coordinate system. Differentiating Eq. 15 gives

a[ 't t aT o (--a -T T +"

ap=dv4'dt= aT (t0+1i a Q lp (39)

which is the spatial acceleration of 13 relative to fixed cc. Observe that a' contains an extra term

that is quadratic in first derivatives.
Demanding a homogeneous tran sformation of spatial accelerations gives the relation

aa D ' ap- [PT p (40)

Comparing Eq. 40 with the time derivative of Eq. 7 shows that the defined spatial acceleration.
A does not represent coordinates of the true acceleration of 3 relative to a because it contains an

additional term that is quadratic in first time derivatives. However, the homogeneous
transformation in Eq. 40 simplifies the equations of motion and the extra term will pose no
problems as long as it is subtracted out when referring to coordinates of the actual acceleration.

3.4. SPATIAL JOINT BUILDING BLOCKS

In idealized mechanical system models, rigid bodies are connected by joints with nondeforming
( surfaces. Many types of joints may be assembled from a set of primitive joint building blocks, A

where each joint allows only a single relative displacement between adjacent frames in one of six
possible directions. The six direcuons are defined locally by the orthogonal unit spatial vectors u,
through u6 as shown below (5]

- ji -----.. ___ ii', :

470 V

L z'" ".- . . . .



__- _ . ........ ......._ .- .1,- . -. --'.
' !7

& -

1001000
Rotation Translation 0 111ia2  010000[, =[~ -l OoilOOIuzuu 3  u 4 u .  0 0 (41)

00 0 1 00

Matrices u I through U3 define bound rotational directions around respective common x. y or z-
: axis pairs. Likewise, U4 through U6 define free translational directions along respective common"

x. y or z-axis pairs. If a primitive joint allows relative motion around or along its axis. then the
corresponding spatial iinit vector will define that joint's influence coefficient mamx [5, 6].
Whether a primitive joint allows a fixed or a variable displacement. tha displacement is given by '

4 0= iOatI7 I-csP (42)

if it is a rotational joint (see Eqs. 5. 6. 23. 24 and 60) or

Tp.,= T0 .i= I + 4 u, (43)

if it is a translational joint (see Eqs. 5.6, 25.26 and 6 1.) The magnitude of rotation is 0 and the
magnitude of translation is t. Any number of constant and variable primitive joint building

blocks may be combined sequentially to form numerous joint configurations by multiplying the
respective displacement transformation matrices together as illustrated in Eq. 35. This approach
allows constant displacement transformations to apWear in variable displacement transformations.

Let joint i have 0 : k, :5 6 dof and associated with it, if ki > 0, is a 6 by 1q influence coefficient

matrix H"' , where the individual columns correspond to the primit.ve joint influence coefficient
matrices, each transformed to the common frame a. Also there is a k by I column matrix of
primitive joint rotational and translational variables pi that correspond to the 1q joint dof. It is
assumed that each joint is defined so H will have full column rank. If this composite joint

connects frames a and 1. there is a spatial displacement matrix Df formed from a sequence of
primitive spatial displacement products that depend on the p, variables, as well as zero or more
constant primitive displacements. The spatial velocity of 1 relative to a in a coordinates is

- vo=H P0 (44)

* Each primitivejoint and corresponding spatial displacement or velocity will have an associated
direction or orientation. The displacement transformation of any primitive joint oriented opposite

to the assumed composite joint orientation must be inverted when forming the product D. The.
inverse may also be affected by reversing the sign on the corresponding variable in Pi. In Eq. 44,
this inversion may be acounted for by reversing the sign on the corresponding column of H,.

The time derivative of Ha is required when computing the relative spatial acceleration. To find
this derivative, first note that the jth column of HI , denoted by HJ defines one displacement

transformation appearing in the product forming D (see Eqs. 41 to 43.) Let

H,- D, u u 1 <:j!k, (45)
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represent the jth primitive joint connecting frames y and 8 that allows one dof, where u.j is one of
the six constant spatial unit vectors in Eq. 41. Either transformation is valid because the influence
coefficient matrix u.j is invariant under transformation D,. Now

|~

D, = D"'i =- ',0 (46)

and if a is fixed

ij = va Ha = va8 Hc' (47)

Derivatives of successive columns of H include additional terms from the relative velocity
vector v'. From Eq. 44, note that va is the sum of the kI relative spatial velocities across the k, ,
primitive joints and v' is the sum of the first j of these. For programming purposes, explicit
expressions for time derivatives of the influence coefficient matrices may be written out directly
and it suffices to leave them in the form Hi*. With this convention, differentiating Eq. 44 gives

ac'=K. pi+H i pi (48)

If a is not fixed, then there will be some frame such as 0 that is, and the above influence
coefficient matrices may be transformed to that frame. In this case, Eq. 44 is transformed before
differentiating, and as indicated in Eqs. 35 to 38, the additional spatial velocity cross product
associated with differentiating this transformation will be included in the influence coefficient
matrix derivative.

3.5. SPATIAL EQUATIONS OF MOTION FOR SINGLE BODY

The spatial equations of motion for an unconstrained rigid body may be obtained by
.1,4trtntiating the coordinates of its spatial momentum that have been expressed in a fixed or
inertial frame. Figure 3 shows a rigid body with embedded frames ci and c where frame c defines
the principai centroidal axes.

4 Z0

00 M

Figure 3. Rigid body with arbitrary frame a and principal centroidal axes c shown relative to
inertial frame 0.

4
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Let the constant spatial inertia matrix

MCC [M 2 01(9

represent the centroidal inertia for this body where the respective thret by three matrices Mao and

h2are the zeroth order (mass) and second order inertia tensors. The body momentum relative to
the point fixed in 0 which instantaneously coincides with its center of mass is given by

i "

a a Oa(50)

where v' =DcI a specifies the spatial velocity in principal coordinates. Transforming Eq. 50
to agives

pa=M a va(51)

where the constant spatial inertia matrix defined by a congruent transformation

C~aa D -T MC Dc-1(52)

is now expressed in a. In a similar manner, the spatial momentum in frame 0 coordinates is

F=Mc0voa (53)

where another congruent spatial displacement transformation gives

M0 a T =D1 Maa Dom (54)

Now Eq. 53 may be differentiated with respect to time to obtain the spatial equations of motion

.0O _ 0 0 .. V (55)

a aoa+Mava(5

Differentiating Eq. 54 with the help of Eq. 34 gives

00o..or 0 0  00-0ma Va , Ma - M-t Vo (56)

Substituting Eq. 56 into Eq. 55 gives the spatial equations of motion for a single rigid body as

00 0 -T 0 0Ma ao M=voF+ga (57)

where g represents the combined spatial forces acting on the body or an extension thereof, taken
at the point which instantaneously coincides with the origin of frame 0.
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4. Constrained Equations of Mlotion

4. 1. REPRESENTATION OF SYSTEM TOPOLOGY

It is assumed that motion is measured relative to an inertial frame. denoted by the symbol 0. Thus
the absolute displacement, velocity. etc.. ot every body in the system will be measured relative to
0. However, if the absolute displacement. velocity, etc. of one body in a collection of bodies
connected by joints is known, and if the corresponding relative joint displacement quantitie are
also known. then all absolute quantities may be calculated from this informatiorn Graph theoretic
methods are used to provide an organized means to accomplish these calculations.

It is also assumed that constrained mechanical systems are composed of rigid bodies connected
by idealized joints with nondeforng surfaces. Furthermore, one body in each kili.tematicali'.
disconnected system (designated as the base body) must be physically connected to 0 or
referenced to it by an artificial six dof joint that gives its absolute displacement relative to 0. The
remaining bodies in each dis- onnected system are directly or indirectly connected to the
corresponding base body by additional joints. The minmum number of jcints (including the
artificial six dof ones) necessary to tie all bodies together into a comtiguous system (no closed
kinematic loops) is exactly equal to the number of bodies in the system. It is convenient to
describe the interconnectivity of these na bodies through the corresponding n. joints with a -
minimum spanning tree. The joints comprising this tree are called arcs and their number, and the
corresponding number of bodies are denoted by n.. The subscript a is used extensively to denote
various quantities associated with the spanning tree. Figure 4 shows an example spanning tree
where rectangles. solid lines and dashed lines identify respective nodes (bodie3). and arcs and
chords (ioints).

An na by n. Boolean arc connectivity matrix Ca may be devised to associate each arc joint with
the corresponding two bodies (parent and child) joined by it. The base body is at the base of the
spanning tree and the other arc joints and bodies radiate outward from there. Assume that each
joint has been oriented so its corresponding child body (farther out in the tree) is referenced
positively to its parent body across the joint. Now it is possible to associate each of the n, joints
with exactly one and only one unique child body. Furthermore. let the n. joints antd bodies be
ordered so that no child appears before its parent in the list. Associate the columns of C, with the
bodies, and the rows with the joints. Within each row. place a "I" in the column corresponding to
the child body and "--I" in the column corresponding to the parent body. Frame 0 does not appear
in this matrix, so there will be no parent entry for any base body.

I I

C-= R, ai

Figure 4. Example spanning tree showing nodes. arcs and chords. The arc- C. and chord C,
connectivity matrices, and their respective inverses R,, and R, are also shown.
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With this convention. Ca is now lower triangular with l's on the d;agonal ani hs a lower

trianpuiar invcrse denoted by Ra• In this form Ra may be wnr.en down just as easily as C. from
the spanning tree reprcsentation of the system. Starting from the jth body in the system. piace a

{ "I" in each row i. column j position corresponding to each body i that is a dc-.;cendant of bodv j.
Alternately the nonzero entres in the ith row of R, identify the arc joints (and their orientations)which lie in the shortest path irom the root of the tree to tht ith joint.

The remaining joints in the system (indicated by dashed linesi connec bodies to form closed
kinematic loops. These joints are called chords and their number is denoted by the symbol n,.
Tney generate exactly n, iidepeiden closed kinematic loops. Similar to the abo-'e discussion, an

n. by na Boolean chord connectivity matrix Cc may be devic!-d to associat each chord joint with

* the corresponding two bodies it joins. Assigning an orientation to each joint with associated
parent and child bodies, each row of Cc will contain exactly one "1" and one "-I". Clealv C. is I

rectangular and does not have an inverse. However, it does have a right inverse defined by

RC =-C C R a  (58)

Similar to Ra above, the nonzero entries in the kth row of Rc identify the arc joints and their
orientations relative to the kth kinematic loop and corresponding lah chord joint. This conventin
assures that each chord joint and corresponding kinematic loop have the same orientation.

4.2. ABSOLUTE SPATIAL DISPLACEMENTS IN CONSTRAINED SYSTEMS

The kth chord joint represented by spatial displacement matrix D1 coinects two tree branches to

fcrri a closed kinematic loop These branches share a common ancestor body, say cr. Matrices D.

and Do'j re defined by identifying those joints in each branch corresponding to the nonzero *

entries in the portions of rows i and j of R, located from its diagonal left to, but not including,

column a. The constraint loop will be orie,te with Dk and D', and opposite to Dc'. The net
displacement around any closed loop must be zero, which is described by the matrix product

D Di )'0 -' ="1 (59)

Equation 59 d-fines the loop constraint equations, but it is evaluated using transformation
matrices of the form

R (60)

, T : , ,,.+1 (61)

and

A CLO Aa .U ACCOAD

D =ToR =R To (62)

I ,+
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Now Eq. 59 may be revised to read

Aa AWUA'JAaJ-l 0'~ ~
*=D-I= ~ (63)Ok k ~ 1

where t and O correspond to respective rotational and translational constraint violations.
Numerical values for all loop constraint equations are obtained from expressions such as Eq. 63.

The constraint equations are nonlinear, and to solve for the dependent joint variables requires a
procedure such as Newton-Raphson iteration and a Jacobian matrix. The constraint loop Jacobian
matrix may be expressed directly in terms of joint influence coefficient matrices. First let

4d =H ,Ap, (64)

represent a stacked column matrix of small changes in relative displacements between adjacent
bodies connected by arc joints where the elements are stacked in the same order as the bodies and -

joints. Column matrix Ap, contains small changes in arc joint displacements stacked in the same
order. Matrix Ha is a stacked block diagonal matrix of the individual arc joint influence

*, coefficient matrices, all transformed to O.
Arranging all chord joints in a similar manner gives a second displacement equation

i Ad =HOApc (65)

where now Ad is a stacked column matrix of small changes in relative displacements between
bodies connected by chord joints, Ap, contains small changes in all chord joint displacements and "
matrix H0 is a stacked block diagonal matrix of the chord joint influence coefficients.

, , Earlier it was noted that the kth row of Re, as defined in Eq. 58, specifies which arc joints
appear in the kinematic loop defined by that row, and it also defines how they are oriented
relative to the loop. Let Rc (and likewise the other topological matrices) be composed of six by
six identity matrices replacing the l's and six by six zero matrices replacing the O's. The product
ROAda adds up all small arc joint displacements in all constraint loops. Combining these
displacements with the remaining small chord joint displacements defined in Eq. 65 gives the
total constrained system displacement as

AO = R Ad. +Adc (66)

where AO° represents a stacked column matrix of the first order variations in the constraints. -Substituting Eqs. 64 and 65 into Eq. 66 and factoring out the coefficients of Ap, and Ape

iden lfies the loop constraint Jacobian matrix(67)

[Rc H' ,HO1] AO (67

For Newton-Raphson iteration, these equations are revised as 4
" i I--I ' - I

-s.,
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[RH Ho], HO] -40 (68)
Lc AP

where numeric values for 4° are obtained from Eq. 63.
It may be necessary ,c place additional constraints of the general form

II(P., PC) =0 (69)

on some of the joint variables. The linearized equations for Newton-Raphson iteration are

P a ] .. (70)
a'cApc

where

Ia/P, and \vc = i/aPc (71)

t )A set of independent variables must be defined before Eqs. 68 and 70 can be applied.
Coordinate partitioning may be used to select independent variables from Pa and p. at various
points in configuration space. This selection process may be done manually or automatic J~y

using LU factorization of the Jacobian matrix of Eqs. 68 and 70 with full row and column
pivoting [10, 13, 9]. The resulting independent coordinate definition is implemented by

q= TaPa Iyp (72)

where Ta and T1 are Boolean matrices that pick out elements from the joint variable arrays.
Alternately, singular value decomposition (SVD) may be applied to the Jacobian matrix at

various points in configuration space to define independent variables. SVD gives the equations .

motion better numerical properties than those obtained from coordinate partitioning because th,

rows of constant matrix [V8. VJ are more nearly tangent to the constraint manifold than are the
rows of ij (14-17]. In this case

q=VaP8 +V Pc (73)

Observing that the independent variables are held fixed during iteration, the Newton-Raphson
algorithm corresponding to Eqs. 68,70 and 73 may be combined as

RC H~ 1 1r -4

F Wa WCi I[ k)J.. -W (74)
Va Vc q-Vap k) - I ,.

"; ~~and- . ":

" , , [,(k+1) rI,(k)] p Ck)] i-. .

: i [/v Ip (75) .
pk) 

Ap k)
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where k is an iteration counter. Similar equations may be defined using Eq. 72 instead.
Equations 74 and 75 provide an opportunity to numerically precompute all dependent joint

variables in terms of the selected independent ones. This is done by sweeping the individual
independent variables through their limited domains and generating multidimensional surfaces of
the dependent quantities. The surfaces may be interpolated by polynomials or other suitable
functions and stored-in memory-for future run-time evaluation. If such functions have been
defined, then p.(q) and pc(q) are given explicitly in terms of q and the system configuration may
be evaluated during run time without iteration.

4.3. SPATIAL VELOCITIES IN CONSTRAINED SYSTEMS

The relative spatial velocities between the bodies connected by respective arc and chord joints
may be written in inertial frame coordinates as (compare with Eqs. 64 and 65)

va= HaPa (76)

and

1~I 0 C O c  c c  (7 7 )

The absolute spatial velocities of all bodies relative to the inertial frame are collected into a
stacked block column matrix v°.Absolute velocities and the relative velocities in Eqs. 76 and 77 .
are related by arc and chord connectivity matrices as

va =Ra H.0p (78)

and s

C v°= HC PC (79)

Substituting Eq. 78 into Eq. 79 and using the identity in Eq. 58 gives (compare with Eq. 67) (

r ~ 1 Pal,. L o!!
[R IRO H. (0

which is the time derivative of the loop constraint equations. Combining Eq. 80 with the time
derivative of Eqs. 69 and 73 gives (compare with Eq. 74) "

[ H 0 Hc 0 1 (8 1).

-. :.,.V a  VC :
Equation 81 shows that if all independent velocities are specified. the complete system velocity ;

can be computed.
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Since pa(q) and p,(q) are explicit functions of q. let

and P. a PCq)/aq B =B.Cq) 1 (82)
I and

P = aPc(q)/aq B(q) l (83)

Substituting Eqs. 82 and 83 into Eq. 81 and equating coefficients of the independent q gives

RCHa0Hc 0
Vla WCi' 0 (84)

V3  V"

which may be used to numerically evaluate Ba and Bc as explicit functions of q.

4.4. SPATIAL ACCELERATIONS IN CONSTRAINED SYSTEMS

Explicit expressions for spatial accelerations are also required to formulate the equations of
motion. Differentiating Eq. 78 gives

a = Ra Ha Pa + R. Ha Pa (85)

which shows that Pa is also required when evaluating a °. Differentiating Eqs. 82 and 83 gives

p3~ + a~B q 4, q (86)

and

, ~Equations 86 and 87 indicate that second partial derivatives of p.(q) and Pj~q) are required when

accelerations must be computed. These quantities may be evaluated by taking the partial
derivative of Eq. 84 with respect to each of the independent variables giving

RCH H °  RC alH°/aqi B1- H°aqj BC A

Eq.85 and bea! wihtehl /eiative of - a nd pa q ) ae require...d (87)

Va Vc 0 Iq10=

Explicit symbolic expressions for the partial derivatives of H3 (also required to evaluate I2 in

Eq. 85) and H, may be obtained with the help of Eqs. 33 to 38 (see the discussion in Section 3.4

as well.) The basic identities aI/aqi =JHa/Mh and allH/aq 1  are helpful in this process. " '
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4.5. AUGMENTED AND REDUCED EQUATIONS OF MOTION

! The equations of motion for unconstrained rigid bodies were given in Eq. 57. Now let
-0TO

M °=v +CT f0(89)

represent the composite system of constrained equations of motion. Matrix Me is a symmetric,
00

stacked block diagonal composition of the individual body inertia submatrices MO arranged in
the same order as the arc joints. Likewise, column matrix go contains the array of spatial forces,

0 -0

gO. Matrix Y is a stacked block diagonal composition of the individual six by six spatial velocity

cross product submatrices of the form given in Eq. 6. Each joint in the system has a corresponding
internal spatial reaction force. The stacked matrix of arc joint reaction forces is denoted as e and

the matrix of chord reaction forces is represented by ec. The connectivity matrices Ca and C'
place the appropriate joint reaction forces into the correct equations of motion in Eq. 89.

The joint reaction forces in e and e contain components of forces that are tangent to the joint
P .manifolds and other components that are perpendicular to them. If every joint is workless, then

the projection of these reaction forces onto the tangent directions will all be zero. If joints contain • 9

active internal forces such as actuators or friction, then the projections will be equal to these
quantities. These nonzero internal forces act in the same directions as the corresponding joint

displacements Pa and p, and are given as

9 Qa = H f (90)

and a f

QC=HOT fo (91)

These reaction forces may also be projected onto the independent variable subspace using the
velocity coefficient matrices B. and BC defined earlier as

Qqa BT Qa =HT (92)

and

: qc C q= B Qc = HOT? (93)•

where Hq(9

Haq Ha Ba (94)

and~~~~0 0 -/'- -

cq=H B (95) "

V ~ ~~4809-9 -
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Equations 85, 89, 92 and 93 represent the augmented constrained equations of motion. To
obtain the reduced equations of motion, first substitute Eq. 85 into Eq. 89. then isolate f. by

inverting and substitute this result into Eq. 92 giving

"J40--QqT+Raq- (-C c  +g +v "ro -MooRaHaq )  (96)

where
4tJ=CR. o )' o(• o97

J HaqJ Ml I Haq)

f . The unknown chord joint reaction forces f may be eliminated from Eq. 96 using Eqs. 58 and 93
to show that

-(R. H' )' c ec= .Lqc (98)

Thus Eq. 96 reduces to the final form

J q=Qq (99)

I: where J is given in Eq. 97 and

Qq=Qqa+Qqc+(RaH (go +v To -MooR.AC )  (100)

5.0. Recursive Reduction and Uncoupling of Equations of Motion

The methods and techniques used to implement algorithms on the computer for evaluating and
uncoupling the equations of motion for highly constrained mechanical systems are crucial to

ji achieving real-time simulation capability. Factorization algorithms that follow minimum path
trajectories through a system's topology will have the smallest computational overhead. These - .

algorithms invoke recursive application of matrix projections.
No matter how broad a system's spanning tree, if the nodes are grouped by level, connectivity 3

matrix Ca may be block partitioned as if representing a single chain. In addition to simplifying
algorithm development, this arrangement also maximizes parallelism across the projection front,
ensuring the best processor performance. A four level example is used to illustrate the algorithm.

5.1. FOUR LEVEL EXAMPLEj The minimum spanning tree graph for a constrained mechanical system may be arranged many

different ways. and it is convenient to order the arc joints so they are grouped by levels according
to the arrangement of independent variables within each level. When all arc joints within each
level are also adjacent in the arc connectivity matrix. it will partition into contiguous block
submatrices making it easier to derive and illustrate the recursive uncoupling algorithm.
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Consider a constrained mechanical system containing a number of closed kinematic loops that
has been partitioned into four discrete levels from the base to the outer leaves of the tree. The
actual spanning tree may have more than four levels so some levels within this partitioning may
contain arc joints and bodies from several levels of the sparng tree. The four level partitioning

of the arc connectivity matrix is written as

Call
Ca=-Ca2l Ca22 (l01)

-Ca32 Ca33[ -C.43 CAA

where each matrix on the diagonal is also diagonal or lower triangular and nonsingular.
Numerical subscripts on the submatrices indicate their relative positions within the composite
connectivity matrix. Negative signs were factored out of the off-diagonal submatrices because
every nonzero off-diagonal submatrix has a negative sign in front of it (see the matrix in Fig. 4.)

The various stacked matrices developed earlier may also be block partitioned according to the
partitioning in Eq. 101. With suitable arrangement of the arc joints within the spanning tree and

0
partitioning of the independent variables, matrix Hq can always be arranged in lower block

. .triangular form and most of the partitioned block submatrices below the diagonal will be zero.
Equation 101 is modified to simplify the recursive algorithm development by premutiplying by 1"

the inverse of its diagonal matrices

I Rat

C33

C a22 R .22 '

Ria a = jR(102)
to give a modified connectivity matrix

,I I

-C 21  I IIr-C32 I (103)
C~a~a -C32  I

' --C43 I

5.2. RECURSIVE REDUCTION AND UNCOUPLING ALGORITHM

For the four level example. Eq. 99 is written in block partitioed form as

J21 J22 J13 J2 82 (104)' /~~~J31 J32 J33 J3/4 i I3 /Q3 ... '-.
: ~ ~~ 4 LJ4J2 J43 -  J4 L44 Q4J.:,-].';:

- 4-
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!, A modified version of block matrix factorization will be used to isolate the variables in Eq. 104.,.
" The primary advantage of this algorithm is that the partitioned coefficient matrix does not have to
) be fully evaluated before the decoupling procedure can begin. The matrix representation of J in,:

Eq. 97 is first revised by solving Eq. 103 for

,(105)

2 I

band substituting to give d

J=HT RTMRH (106)

where

M=M°°= - (107)* ) M33

M1
and

iii
H a H aq H2 = H22 (108), /1H31 ]f32 H33 -

LH41 H42 H43 H44

As noted earlier, matrix H is shown worst case and many of the block matrices below the
diagonal may be zero. Now C. as defined in Eq. 103. may be factored into the product of

* elementary matrices that are easily inverted to give

* (I' II
R (109)

I C32 1

C43 I th . ati

The factored form of R in Eq. 109 makes the recursive decoupling algorithm easier to derive
and understand. The algorithm represents the operations necessary to evaluate J in Eq. 106, Aij perform LU factorization and solve for the unknowns. Most significantly. the LU factors of J are -
generated as it is evaluated. As implied by Eq. 109. an n-level system. requires n-I projection
crerations to evaluate J and an additional n-I projection operations to generate its LU factors.
This algorithm works in a pipeline fashion. After completing the first level evaluation of J. it then
simultaneously works on the second level evaluation and the first level LU factorization. This
process continues until the final factorization has been accomplished at the nth step. Rather than
2n-2 steps. this algorithm requires n steps which is significant when parallel processors at, used.
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To keep the algorithm compact. the contents of various matrices are overwritten. The overwriting
operation is indicated by the assignment arrow 4-.

Assuming an n level system. the algorithm follows:
First perform the initialization

(i) J1j=HiMn.Hn- ((i =n, n-i...l).,j =ii-I.)

(2) -1

(2) (2) = Jnn Qn
Next. setting k = n-l. the evaluation procedure continues recursively as foilows:

(3) Mjk= Mjk+I Ck+l.k (j=n. n-I . k+)

(4) Mkk -- Mkk+ Mk+l.k Ck+l.kT

(5) Jij-Jij+HMkkHkj ((i =k, k-I .l),j =i,i-l. 1)
(6) JiJ=O (i. j = k. k-l . 1)

T

(7 -T ij+Hu n k ((m n. n-1. k+l1) , i j=k.k-l1. I1
(8) Jij "Jij+ Jij + Jii  ((i =k, k- 1...., I),j =i.i-I .... 1)

T
(9) JIj'-Jtj+HrMkHk (((in =n. n-I.k..+l). i = m. rn-i. k+ 1).j = k. k-l. 1)

SLL k - JM Jjk

(10) Jik-"Jik-JjLjk(i-j-l,-2..
. . k) (j=n. n-i . k+)

Qk Qk- TQj
(11) 4k=JkkQk

le (12) reduce k -k- I
(13) if k = 0. decoupling procedure is completed: recourse to step (15) below.
(14) recourse to step (3), above until completed.(15) increase k +- k + I

if k = n. algorithm is completed; stop.
(16) k+l ,- qk+l - Lk+.j4j (j=k.k-1. 1)
(17) recourst to step (15). above until completed.

This algorithm gives a rough picture of the procedures required to uncouple the equations of
motion using block submatrices. The algorithm represents worst case because many of the
submatrices of H ar'pearing in steps 1, 5. 7 and 9 may be zero. Algorithm changes may be
accounted for by modifying the index counters to skip over zero matrices. For effective parallel
implementation. the algorithm should not be considered as strictly sequential. For large scale
problems, most of the submatrices will be sparse and substantial overhead will be saved by
breaking these operations down even further.

In the current formulation, connectivity matrices Ck+I.k contain only I's and O's. so steps 3 and
4 require simple additions. These connectivity matrices effectively transform child body inertia
matrices to conform with parent body inertias so they can be projected or added onto the
appropriate parent inertias. In the present form, the inertia and influence coefficient matrices are
all expressed in a common frame. The inertia and influence coefficient matrices may also be
expressed in local body frames so the terms will involve fewer variables. Now the connectivity
• awrices Ck+l.k will contain local spatial transformation matrices to transform inertia matrices.
similar to Eqs. 52 and 54. However. this will make it much easier to analyze the equations and
determine variable dependencies for precomputing coefficients. In many applications, this form.,
will result in a higher percentage of the operations involving three or less variables, making
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interpolation of these quantities practical. This discussion clearly indicates the evolution of hybrid
techniques and shows that automated optimization of general system models will be difficult.

Obviously the operations necessary to evaluate Qq in Eq. 100 must also be taken into account.
These equations contain many of the same quantities appearing in J. and it will be possible to use
interpolating functions here as well. Another factor important to load balancing on parallel
processors. is synchrohing the evaluation of these equations with those in the above algrithm.

6. Large Scale Vltide Example

A large scale' vehicle' model:is presented to illustrate the types of simulations possible using the
piocddures b.cfly describidlin this paper. Figures 5 to 7 show computer generated graphical
images of the vehicle system with cutaway views illustrating major steering and suspension

components. The system is composed of an eight by eight tractor towing a multiaxle trailer
,* carrying a tracked vehicle. The wheels on tractor axles one and two are steered and all steering

and suspension kinematic iftages were accurately modeled. Nonlinear suspension compliance.
dainping, hysteresis. and jounce and rebound limiters on all three vehicles were accurately
modeled with nonlinear functions using measured data. Wheels on all three vehicles are allowed
to rotate and leave.the surface,,and support and tractive tire forces are modeled in all three
directions on every wheel. The tra6tor drive trainwas not modeled, but the vehicle is propelled by
applying equal driving torques to all eight wheels.

The tradkd'vehicle model, with 40 dof is a fully functional stand-alone system composed of
1 i35 rigid bodis (chassis, 14 road arm/rbad wheel pairs. 2 drive sprockets. 2 idlers. turret and

trt munnion;) 35 joints End no closed kinematic-loops. The model has massless deformable tracks
that supportthe road wheels ind allow it.to be propelled and steered through the drive sprockets.
It is inierfaced with the trailer chassis m del through deformable road wheel models that can
rotate and slide. develop.forces in allthiree direcions, and leave the trailer bed surface. The

chassis model is fastened to the trailer bed by defomable chain models. The high resolution
vehicle model was used in lieu of adummy load-because its suspension compliance significantly
affects the transient loads generated in the trailer suspension and overall system roll stability.

The tractor model, with 23 dof is a fully functional stand-alone system composed of 58 rigid
bodies (chassis. 30 suspension elements. 4 steering hubs, 8 wheels. 13 steering linkages and 2
fifth wheel bodies,) 78 joigts and 20 closed kinematic loops. The tractor chassis outline was not i-
shown on the grahica imnge.in Fig. 6 to piovide a better view of the suspension and steering
models as itnegotiates a 0.3 meter ramp (the traisor is heading to the right.) Each suspension is
compoied of a control arm pair conneted to a control hub. The front suspensions are supported
by fore-aft torsionbars connected between the control arms and chassis as shown in the figure.
The rear suspensions - suppi*iby piVot"ng walking beams. A pitmain arm shown in the upper

right had come provides teering input to the system through the steering kinematic linkages.
The trailer model. With 29 d6f is:a fully functional stand-alone system composed of 49 rigid

bodies (chissis. 36 suspension elements and'12 wheels,) 59 joints and 10 closed kinematic loops.
Part of the trailer -iassis-outline Was not shown on the graphical image in Fig. 7 to provide a
better view of the suspension as it negotiates a 0.25 meter hole (the trailer-is heading to the left.)
The suspension is composed of two main beams that piv,0t on the chassis above axles 2 and

A . :'support axles 3. Two secondary bems pivot on the main beais and support axles I and 2. The
,main suspension cylhiders move vertically relative to the chassis and are connected to transverse

, - ,~axles that can rotate arviind fore-aft axes to equalize loads on the tires. The beams are connected -*":
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to the suspensions through connecting linklcushion cylinder arrangements that help absorb road
shock,. A strie§ of yaw links connected between the chassis and suspension cylinders 1. and

j between suspension cylinders 2-and 3 piivent the susipensions from steering.

IjFigure 5. tetenraedmaeo trcortaie ssemtsporting a tracked vehicle.

ik of - 8*-

1~~ wi Figur of &the---r ispwot as itnegotiarea.meterrhole.
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